Heat treatment temperature effects on the formation of Mg2Si films deposited by electron beam evaporation

  • Qingquan Xiao
  • Di Fang
  • Xiaojun Liu
  • Yangfang Liao
  • Kejie Zhao
  • Quan Xie


It is of great importance to do research on the preparation and applications of the Mg2Si film as an ecological friendly semiconducting material. Semiconducting Mg2Si films were prepared by electron beam evaporation deposition of Mg film onto Si substrate and subsequent heat treatment. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize and analyse the obtained Mg2Si films. Effects of heat treatment temperature (300–700 °C) under Ar gas pressure (200 Pa) on the crystal structure and surface morphologies of Mg2Si films were investigated. The XRD results show that heat treatment at 400–500 °C for 4–5 h is the optimal heat treatment condition to prepare Mg2Si films by the diffusion between the Mg atoms and Si atoms, and high temperature treatment above 600 °C causes the decomposition of Mg2Si and the formation of MgO. The SEM images show that the surfaces of obtained films become smooth and compact with the increase in heat treatment temperature. However, significant differences on the surface of the films occur when heat temperature is above 600 °C because of the decomposition of Mg2Si phase and the formation of MgO phase. These experimental results are beneficial to the development of optoelectronic devices based on the Mg2Si films.


Heat Treatment Temperature High Treatment Temperature Electron Beam Evaporation Heat Treatment Time Optimal Heat Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work was partly supported by the National Natural Science Foundation of China (61264004), the Fund for International Sci-Tech Cooperation Program of Guizhou Province, China ([2013]7003), the Natural Science Foundation of Guizhou Province, China ([2014]2052, [2013]2209), the Open Fund from Engineering Center for Avionics Electrical and Information Network of Guizhou Provincial Colleges and Universities, China (HKDZ201403) and Sci-Tech Program of Guiyang City of Guizhou Province, China ([2012101]2-16).


  1. 1.
    V. Borisenko, Semiconducting Silicides (Springer, New York, 2000)CrossRefGoogle Scholar
  2. 2.
    H. Udono, H. Tajima, M. Uchikoshi, M. Itakura, Jpn. J. Appl. Phys. 54, 07JB06 (2015)CrossRefGoogle Scholar
  3. 3.
    H. Udono, Y. Yamanaka, M. Uchikoshi, M. Isshiki, J. Phys. Chem. Solids 74, 311 (2013)CrossRefGoogle Scholar
  4. 4.
    T. Kato, Y. Sago, H. Fujiwara, J. Appl. Phys. 110, 063723 (2011)CrossRefGoogle Scholar
  5. 5.
    G. Tompa, Y. Li, D. Agassi, S. Kim, S. Hong, J. Electron. Mater. 25, 925 (1996)CrossRefGoogle Scholar
  6. 6.
    A. Vantomme, J. Mahan, G. Langouche, Appl. Phys. Lett. 70, 1086 (1997)CrossRefGoogle Scholar
  7. 7.
    J.L. Margrave, The characterization of high-temperature vapors (Wiley, New York, 1967)Google Scholar
  8. 8.
    J. Mahan, A. Vantomme, G. Langouche, J. Becker, Phys. Rev. B 54, 16965 (1996)CrossRefGoogle Scholar
  9. 9.
    X. Wang, Y. Wang, J. Zou, Chin. Phys. B 18, 3079 (2009)CrossRefGoogle Scholar
  10. 10.
    S.W. Song, K.A. Striebel, R.P. Reade, G.A. Roberts, E.J. Cairns, J. Electrochem. Soc. 150, A121 (2003)CrossRefGoogle Scholar
  11. 11.
    T. Serikawa, M. Henmi, T. Yamaguchi, H. Oginuma, K. Kondoh, Surf. Coat. Tech. 200, 4233 (2006)CrossRefGoogle Scholar
  12. 12.
    N.G. Galkin, S.V. Vavanova, A.M. Maslov, K.N. Galkin, A.V. Gerasimenko, T.A. Kaidalova, Thin Solid Films 515, 8230 (2007)CrossRefGoogle Scholar
  13. 13.
    R. Nakagawa, H. Katsumata, S. Hashimoto, A. Sakuragi, Jpn. J. Appl. Phys. 54, 085503 (2015)CrossRefGoogle Scholar
  14. 14.
    Q. Xiao, Q. Xie, X. Shen, J. Zhang, Z. Yu, K. Zhao, Appl. Surf. Sci. 257, 7800 (2011)CrossRefGoogle Scholar
  15. 15.
    H. Yu, Q. Xie, Q. Chen, J. Mater. Sci. Mater. El. 24, 3768 (2013)CrossRefGoogle Scholar
  16. 16.
    A. Vantomme, G. Langouche, J. Mahan, J. Becker Microelectron. Eng. 50, 237 (2000)CrossRefGoogle Scholar
  17. 17.
    H.Y. Jiang, Y.G. Leng, L.M. Zhang, J. Wuhan Univ. Technol. 23, 7 (2001)Google Scholar
  18. 18.
    J.-I. Tani, M. Takahashi, H. Kido, J. Alloys Compd. 488, 346 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Qingquan Xiao
    • 1
    • 2
  • Di Fang
    • 1
  • Xiaojun Liu
    • 1
  • Yangfang Liao
    • 1
  • Kejie Zhao
    • 3
  • Quan Xie
    • 1
  1. 1.Institute of Advanced Optoelectronic Materials and Technology of College of Big Data and Information EngineeringGuizhou UniversityGuiyangChina
  2. 2.Computational Mechanics and Reliability GroupUniversity of GreenwichLondonUK
  3. 3.Sci-tech Cooperation Office of Beijing BranchChinese Academy of SciencesBeijingChina

Personalised recommendations