Visible light photocatalytic activity of novel Ni2+, Cu2+ and VO2 complexes derived from vanillin bidentate Schiff base ligand doped on TiO2 nanoparticles

  • Morteza Dostani
  • Ali Hossein Kianfar
  • Mohammad Mohsen Momeni


A new bidentate NN-Schiff base ligand of vanillin, (E)-4-(((2-amino-5-nitrophenyl)imino)methyl)-2-methoxyphenol, was synthesized and characterized by different spectroscopic techniques. In addition, mononuclear complexes were synthesized by treating the corresponding metal salts of Ni2+, Cu2+ and VO2 and Schiff base ligand in methanol. The resulting complexes were characterized by FT-IR, UV–Vis and 1H NMR techniques. The hybrids of complex/TiO2 nanoparticles were prepared and their structure and morphology were characterized by FT-IR, XRD, TEM, SEM and solid state UV–Vis absorption. Furthermore, Kubelka–Munk transformations were used to measure the absorption curves and band gap. The photocatalytic activities of the prepared modified semiconductors were tested under visible radiation for the degradation of methylene blue in the aqueous solution. The results indicated that the incorporation of these complexes improved the activation of TiO2 with visible light.


TiO2 Methylene Blue Photocatalytic Activity Methylene Blue Vanillin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S.C. Bell, G.L. Conklin, S.J. Childress, J. Am. Chem. Soc. 85, 2867 (1963)CrossRefGoogle Scholar
  2. 2.
    J. Kjeld, C. van Bommel, W. Verboom, H. Kooijman, A.L. Spek, N.D. Reinhoudt, Inorg. Chem. 37, 4197 (1998)CrossRefGoogle Scholar
  3. 3.
    J. Zuo, C.F. Bi, Y.H. Fan, D. Buac, C. Nardon et al., J. Inorg. Biochem. 118, 83 (2013)CrossRefGoogle Scholar
  4. 4.
    B.S. Creaven, B. Duff, D.A. Egan, K. Kavanagh et al., Inorg. Chim. Acta Part A 363, 4048 (2010)CrossRefGoogle Scholar
  5. 5.
    M. Moghadam, V. Mirkhani, S. Tangestaninejad, I. Mohammadpoor-Baltork, A.A. Abbasi-Larki, Appl. Catal. A 349, 177 (2008)CrossRefGoogle Scholar
  6. 6.
    P.G. Cozzi, Chem. Soc. Rev. 33, 410 (2004)CrossRefGoogle Scholar
  7. 7.
    Z. Dong, X. Le, X. Li, W. Zhang, C. Dong, J. Ma, Appl. Catal. B Environ. 158–159, 129 (2014)CrossRefGoogle Scholar
  8. 8.
    M.E. Davis, Nature 417, 813 (2002)CrossRefGoogle Scholar
  9. 9.
    M. Sahin, N. Kocak, D. Erdenay, U. Arslan, Spectrochim. Acta, Part A 103, 400 (2013)CrossRefGoogle Scholar
  10. 10.
    M.A. Phaniband, S.D. Dhumwad, Transit. Met. Chem. 32, 1117 (2007)CrossRefGoogle Scholar
  11. 11.
    J.R. Anacona, N. Noriega, J. Camus, Spectrochim. Acta, Part A 137, 16 (2015)CrossRefGoogle Scholar
  12. 12.
    K.T. Joshi, A.M. Pancholi, K.S. Pandya, K.K. Singh, A.S. Thakar, Asian J. Chem. 22, 7706 (2010)Google Scholar
  13. 13.
    S.A. Patil, C.T. Prabhakara, B.M. Halasangi, S.S. Toragalmath, P.S. Badami, Spectrochim. Acta, Part A 137, 641 (2015)CrossRefGoogle Scholar
  14. 14.
    S. Wang, L.N. Bai, H.M. Sun, Q. Jiang, J.S. Lian, Power Technol. 244, 9 (2013)CrossRefGoogle Scholar
  15. 15.
    N.B. Gopal Reddy, P. Murali Krishna, N. Kottam, Spectrochim. Acta, Part A 137, 371 (2015)CrossRefGoogle Scholar
  16. 16.
    M.H. Habibi, J. Parhizkar, Spectrochim. Acta, Part A 150, 879 (2015)CrossRefGoogle Scholar
  17. 17.
    M.H. Habibi, Z. Rezbani, Spectrochim. Acta, Part A 147, 173 (2015)CrossRefGoogle Scholar
  18. 18.
    A. Fujishima, X. Zhang, D.A. Tryk, Surf. Sci. Rep. 63, 515 (2008)CrossRefGoogle Scholar
  19. 19.
    A.D. Paola, E. García-López, G. Marcì, L. Palmisano, J. Hazard. Mater. 211–212, 3 (2012)CrossRefGoogle Scholar
  20. 20.
    Y.Q. Wang, R.R. Zhang, J.B. Li, L.L. Li, S.W. Lin, Nanoscale Res. Lett. 9, 46 (2014)CrossRefGoogle Scholar
  21. 21.
    B. Ohtani, Chem. Lett. 37, 216 (2008)CrossRefGoogle Scholar
  22. 22.
    M.H. Habibi, M.H. Rahmati, Spectrochim. Acta, Part A 133, 13 (2014)CrossRefGoogle Scholar
  23. 23.
    G. Fan, J. Tong, F. Li, Ind. Eng. Chem. Res. 51, 13639 (2012)CrossRefGoogle Scholar
  24. 24.
    K.S.U. Mhan, M. Al-Shahry, W.B. Ingler, Science 297, 2243 (2002)CrossRefGoogle Scholar
  25. 25.
    S. Song, J. Tu, Z. He, F. Hong, W. Liu, J. Chen, Appl. Catal. A 378, 169 (2010)CrossRefGoogle Scholar
  26. 26.
    Y. Li, X. Zhou, X. Hu, X. Zhao, P. Fang, J. Phys. Chem. C 113, 16188 (2009)CrossRefGoogle Scholar
  27. 27.
    A.H. Kianfar, P. Dehghani, M.M. Momeni, Mater. Sci. Mater. Electron. 27, 3368 (2016)CrossRefGoogle Scholar
  28. 28.
    A.H. Kianfar, L. Keramat, M. Dostani, M. Shamsipur, M. Roushani, F. Nikpour, Spectrochem. Acta Part A 77, 424 (2010)CrossRefGoogle Scholar
  29. 29.
    X.T. Yoko, K. Kamiya, K. Tanaka, J. Mater. Sci. 25, 3922 (1990)CrossRefGoogle Scholar
  30. 30.
    A.A.A. Emara, Spectrochim. Acta, Part A 77, 117 (2010)CrossRefGoogle Scholar
  31. 31.
    M.S. Refat, I.M. El-Deen, H.K. Ibrahim, S. El-Ghool, Spectrochim. Acta, Part A 65, 1208 (2006)CrossRefGoogle Scholar
  32. 32.
    J. Yan, G. Wu, N. Guan, L. Li, Z. Li, X. Cao, Phys. Chem. Chem. Phys. 15, 10978 (2013)CrossRefGoogle Scholar
  33. 33.
    M.M. Momeni, Y. Ghayeb, J. Mater. Sci.: Mater. Electron. 27, 1062 (2016)Google Scholar
  34. 34.
    M.M. Momeni, Y. Ghayeb, Ceramic. Int. 42, 7014 (2016)CrossRefGoogle Scholar
  35. 35.
    M.M. Momeni, Y. Ghayeb, J. Mol. Catal. A: Chem. 417, 107 (2016)CrossRefGoogle Scholar
  36. 36.
    A.K.L. Sajjad, S. Shamaila, B. Tian, F. Chen, J. Zhang, J. Hazard. Mater. 177, 781 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Morteza Dostani
    • 1
  • Ali Hossein Kianfar
    • 1
  • Mohammad Mohsen Momeni
    • 1
  1. 1.Department of ChemistryIsfahan University of TechnologyIsfahanIran

Personalised recommendations