Advertisement

Effect of anchoring atom and electrostatic gating on the electronic transport properties in single molecular electronic devices

  • R. M. Hariharan
  • D. John Thiruvadigal
Article
  • 195 Downloads

Abstract

The effect of anchoring atom and electrostatic gate on the electron transport through gated thiophene single molecular device is studied by utilizing non-equilibrium Green’s function coupled with self-consistent extended Huckel theory. Gated gold–molecule–gold junctions are built using thiophene (Tp) molecule as functional component and sulphur (S) and selenium (Se) as anchoring atoms in field effect transistor (FET) configuration. The electron transport analysis of the gated thiophene single molecular device is investigated through the current–voltage and the electron transmission spectra. The results show that the anchoring atoms modulate the transport nature of these devices in a controlled manner. We find that the S–Tp–S device produces larger current than Se–Tp–Se device. Also we studied the effect of electrostatic gating on S–Tp–S and Se–Tp–Se device. We find that, positive bias or negative bias for Vg, will correspondingly, raise or lower the transmission coefficients T(E) in relation to the Fermi level (EF) for both the devices. Our results show that magnitude of Isd current varies more than one order for same Vsd over different Vg bias for S–Tp–S device, whereas for Se–Tp–Se device Isd current varies more than five times for same Vsd over different Vg bias. Se–Tp–Se device shows gate controlled NDR behavior. Finally, we demonstrated the application of using thiophene based single molecular FET to realize five basic logic gates very low Vsd bias. The key feature of the suggested design is the opportunity of demonstrating various logic gates with just one molecular unit transistor and demonstrated at very low Vsd bias.

Keywords

Thiophene High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Logic Gate Negative Differential Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors wish to thank Department of Science and Technology, Government of India. This work was supported by a grant from DST-FIST, Govt. of India (Grant Ref. No SR/FST/PSI-010/2010).

References

  1. 1.
    G.E. Moore, Electronics 38, 114 (1965)Google Scholar
  2. 2.
    B. Hoefflinger, Chips 2020 (Springer, Berlin, 2011), pp. 161-174CrossRefGoogle Scholar
  3. 3.
    A. Aviram, M.A. Ratner, Chin. Phys. Lett. 29, 277 (1974)CrossRefGoogle Scholar
  4. 4.
    C. Joachim, J.K. Gimzewski, A. Aviram, Nature 408, 541 (2000)CrossRefGoogle Scholar
  5. 5.
    J. Yao, Y. Li, Z. Zou, H. Wang, Y. Shen, Superlattices Microstruct. 51, 396 (2012)CrossRefGoogle Scholar
  6. 6.
    H. Song, Y. Kim, Y.H. Jang, H. Jeong, M.A. Reed, T. Lee, Nature 462, 1039 (2009)CrossRefGoogle Scholar
  7. 7.
    K. Xiao, Y. Liu, T. Qi, W. Zhang, F. Wang, J. Gao, W. Qiu, Y. Ma, G. Cui, S. Chen, X. Zhan, J. Am. Chem. Soc. 127, 13281 (2005)CrossRefGoogle Scholar
  8. 8.
    B. Xu, X. Xiao, X. Yang, L. Zang, N. Tao, J. Am. Chem. Soc. 127, 2387 (2005)Google Scholar
  9. 9.
    W. Jing, L. Yun-Ye, C. Hao, W. Peng, R. Note, H. Mizuseki, Y. Kawazoe, Chin. Phys. Lett. 27, 067303 (2010)CrossRefGoogle Scholar
  10. 10.
    A. Mahmoud, P. Lugli, J. Appl. Phys. 116, 204504 (2014)CrossRefGoogle Scholar
  11. 11.
    Y. Xu, B. Cui, G. Ji, D. Li, D. Liu, Phys. Chem. Chem. Phys. 15, 832 (2013)CrossRefGoogle Scholar
  12. 12.
    S.M. Kang, Y. Leblebici, CMOS Digital Integrated Circuits Analysis Design, 4th edn. (McGraw-Hill, USA, 2002)Google Scholar
  13. 13.
    J.M. Wang, S.C. Fang, W.S. Feng, IEEE J. Solid State Circuits 29, 780 (1994)CrossRefGoogle Scholar
  14. 14.
    Y. Xu, C. Fang, B. Cui, G. Ji, Y. Zhai, D. Liu, Appl. Phys. Lett. 99, 043304 (2011)CrossRefGoogle Scholar
  15. 15.
    X.Y. Feng, Z. Li, J. Yang, J. Phys. Chem. C 113, 21911 (2009)CrossRefGoogle Scholar
  16. 16.
    M.J. Li, H. Xu, K.Q. Chen, M.Q. Long, Phys. Lett. A 376, 1692 (2012)CrossRefGoogle Scholar
  17. 17.
    W.W. Cheng, Y.X. Liao, H. Chen, R. Note, H. Mizuseki, Y. Kawazoe, Phys. Lett. A 326, 412 (2004)CrossRefGoogle Scholar
  18. 18.
    S. Sen, S. Chakrabarti, Comput. Mater. Sci. 4, 889 (2009)CrossRefGoogle Scholar
  19. 19.
    C.P. Kala, P.A. Priya, D.J. Thiruvadigal, J. Comput. Theor. Nanosci. 10, 213 (2012)CrossRefGoogle Scholar
  20. 20.
    Y. Luo, C.K. Wang, Y. Fu, Chem. Phys. Lett. 369, 299 (2003)CrossRefGoogle Scholar
  21. 21.
    C.P. Kala, P.A. Priya, D.J. Thiruvadigal, Commun. Theor. Phys. 59, 649 (2013)CrossRefGoogle Scholar
  22. 22.
    R.N. Wang, X.H. Zheng, Z.X. Dai, H. Hao, L.L. Song, Z. Zeng, Phys. Lett. A 375, 657 (2011)CrossRefGoogle Scholar
  23. 23.
    S. Jalili, R. Ashrafi, Phys. E 43, 960 (2011)CrossRefGoogle Scholar
  24. 24.
    F. Zahid, M. Paulsson, E. Polizzi, A.W. Ghosh, L. Siddiqui, S. Datta, J. Chem. Phys. 123, 064707 (2005)CrossRefGoogle Scholar
  25. 25.
    ATOMISTISTIX TOOLKIT version 12.8.2, Quantum Wise A/S (www.quantumwise.com)
  26. 26.
    D.Q. Andrews, G.C. Solomon, R.P. Van Duyne, M.A. Ratner, J. Am. Chem. Soc. 130, 17309 (2008)CrossRefGoogle Scholar
  27. 27.
    H. Fang, R.Z. Wang, S.Y. Chen, M. Yan, X.M. Song, B. Wang, Appl. Phys. Lett. 98, 082108 (2011)CrossRefGoogle Scholar
  28. 28.
    M. Brandbyge, J.L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2008)CrossRefGoogle Scholar
  29. 29.
    K. Stokbro, D.E. Petersen, S. Smidstrup, A. Blom, M. Ipsen, K. Kaasbjerg, Phys. Rev. B 82, 075420 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Centre for Materials Sciences and Nanodevices, Department of Physics and NanotechnologySRM UniversityKattankulathurIndia

Personalised recommendations