Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 12, pp 12479–12484 | Cite as

Enhanced energy storage properties of lead-free (1−x)Bi0.5Na0.5TiO3xSrTiO3 antiferroelectric ceramics by two-step sintering method

  • Ning Xu
  • Yunfei Liu
  • Zhenglei Yu
  • Ruihong Yao
  • Jiaojiao Ye
  • Yinong Lu
Article

Abstract

The lead-free (1−x)Bi0.5Na0.5TiO3xSrTiO3 antiferroelectric ceramics were synthesized by two-step sintering method. The influences of SrTiO3 contents, second sintering temperatures and soaking times on phase structure and energy-storage density were investigated in detail. As the content of SrTiO3 increases, the ceramics transform from rhombohedral ferroelectric phase into the tetragonal antiferroelectric phase (or pseudocubic phase). The appropriate soaking time and second sintering temperature are beneficial to obtain dense ceramics with fine homogeneous grains, whose the external breakdown electric field and maximum polarization have a large improvement. The optimum electrical performances with low remanent polarization (3.21 μC/cm2), a large maximum polarization (31.05 μC/cm2), and a large energy density (0.95 J/cm3) at 10 Hz were obtained at 1160 °C for BNT–35ST ceramics.

Keywords

Maximum Polarization Energy Storage Density Breakdown Electric Field BiScO3 Pure Perovskite Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by Major Program for the Natural Scientific Research of Jiangsu Higher Education Institutions (12KJA430002) and Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT), IRT1146. And the authors acknowledge the financial support from Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

References

  1. 1.
    B. Xu, V.R. Cooper, D.J. Singh, Y.P. Feng, Phys. Rev. B 83, 064115 (2011)CrossRefGoogle Scholar
  2. 2.
    H. Ogihara, C.A. Randall, S. Trolier-McKinstry, J. Am. Ceram. Soc. 92(8), 1719–1724 (2009)CrossRefGoogle Scholar
  3. 3.
    B. Ma, D.-K. Kwon, M. Narayanan, U. Balachandran, Mater. Lett. 62(20), 3573–3575 (2008)CrossRefGoogle Scholar
  4. 4.
    N. Zhang, Y. Feng, Z. Xu, Mater. Lett. 65(11), 1611–1614 (2011)CrossRefGoogle Scholar
  5. 5.
    Z. Liu, X.F. Chen, W. Peng, C.H. Xu, X.L. Dong, F. Cao, G.S. Wang, Appl. Phys. Lett. 106, 262901 (2015)CrossRefGoogle Scholar
  6. 6.
    G.Z. Zhang, D.Y. Zhu, X.S. Zhang, L. Zhang, J.Q. Yi, B. Xie, Y.K. Zeng, Q. Li, Q. Wang, S.G. Jiang, J. Am. Ceram. Soc. 98(4), 1175–1181 (2015)CrossRefGoogle Scholar
  7. 7.
    Q.F. Zhang, T.Q. Yang, Y.Y. Zhang, J.F. Wang, X. Yao, Appl. Phys. Lett. 102, 222904 (2013)CrossRefGoogle Scholar
  8. 8.
    F.F. Wang, M. Xu, Y.X. Tang, T. Wang, W.Z. Shi, C.M. Leung, J. Am. Ceram. Soc. 95(6), 1955–1959 (2012)CrossRefGoogle Scholar
  9. 9.
    A. Ullah, C.W. Ahn, A. Hussain, S.Y. Lee, H.J. Lee, I.W. Kim, Curr. Appl. Phys. 10(4), 1174–1181 (2010)CrossRefGoogle Scholar
  10. 10.
    M. Acosta, N. Liu, M. Deluca, S. Heidt, I. Ringl, C. Dietz, Robert W. Stark, W. Jo. J. Appl. Phys. 117(13), 134106 (2015)CrossRefGoogle Scholar
  11. 11.
    C. Groh, W. Jo, J. Rödel, J. Am. Ceram. Soc. 97(5), 1465–1470 (2014)CrossRefGoogle Scholar
  12. 12.
    W. Jo, R. Dittmer, M. Acosta, J.D. Zang, C. Groh, E. Sapper, K. Wang, J. Rödel, J. Electroceram. 29, 71–93 (2012)CrossRefGoogle Scholar
  13. 13.
    J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, J. Eur. Ceram. Soc. 35, 1659–1681 (2015)CrossRefGoogle Scholar
  14. 14.
    Y.H. Xu, X.M. Liu, G.D. Wang, X.L. Liu, Y.J. Feng, Ceram. Int. 42, 4313–4322 (2016)CrossRefGoogle Scholar
  15. 15.
    F. Gao, X.L. Dong, C.L. Mao, W. Liu, H.L. Zhang, L.H. Yang, F. Cao, G.S. Wang, J. Am. Ceram. Soc. 94(12), 4382–4386 (2011)CrossRefGoogle Scholar
  16. 16.
    T.T. Zou, X.H. Wang, W. Zhao, L.T. Li, J. Am. Ceram. Soc. 91(1), 121–126 (2008)CrossRefGoogle Scholar
  17. 17.
    J.X. Ding, Y.F. Liu, Y.N. Lu, H. Qian, H. Gao, H. Chen, C.J. Ma, Mater. Lett. 114, 107–110 (2014)CrossRefGoogle Scholar
  18. 18.
    J.J. Ye, Y.F. Liu, Y.N. Lu, J.X. Ding, C.J. Ma, H. Qian, Z.L. Yu, J. Mater. Sci. Mater. Electron. 25, 4632–4637 (2014)CrossRefGoogle Scholar
  19. 19.
    Y.J. Hiruma, Y. Imai, Y. Watanabe, H.J. Nagata, T. Takenaka, Appl. Phys. Lett. 92, 26 (2008)CrossRefGoogle Scholar
  20. 20.
    T.M. Correia, M. McMillen, M.K. Rokosz, P.M. Weaver, J.M. Gregg, G. Viola, M.G. Cain, J. Am. Ceram. Soc. 96(9), 2699–2702 (2013)CrossRefGoogle Scholar
  21. 21.
    R.A. Malik, J.-K. Kang, A. Hussain, C.-W. Ahn, H.-S. Han, J.-S. Lee, Appl. Phys. Express 7, 061502 (2014)CrossRefGoogle Scholar
  22. 22.
    X.X. Zhou, C.L. Yuan, Q.N. Li, Q. Feng, C.R. Zhou, X. Liu, Y. Yang, G.H. Chen, J. Mater. Sci. Electron. 27(4), 3948–3956 (2015)CrossRefGoogle Scholar
  23. 23.
    Z.Y. Wang, L. Zhang, H. Yang, J. Zhang, L.X. Wang, Q.T. Zhang, Ceram. Int. 42, 4238–4245 (2016)CrossRefGoogle Scholar
  24. 24.
    L. Zhang, H. Yang, X.B. Qiao, T.Y. Zhou, Z.Y. Wang, J. Zhang, D.Y. Tang, D.Y. Shen, Q.T. Zhang, J. Eur. Ceram. Soc. 35, 2391–2401 (2015)CrossRefGoogle Scholar
  25. 25.
    Z. Song, H.X. Liu, S.J. Zhang, Z.J. Wang, Y.T. Shi, H. Hao, M.H. Cao, Z.H. Yao, Z.Y. Yu, J. Eur. Ceram. Soc. 34, 1209–1217 (2014)CrossRefGoogle Scholar
  26. 26.
    W.P. Cao, W.L. Li, X.F. Dai, T.D. Zhang, J. Sheng, Y.F. Hou, W.D. Fei, J. Eur. Ceram. Soc. 36, 593–600 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.The State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and EngineeringNanjing Tech UniversityNanjingChina
  2. 2.Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)NanjingChina

Personalised recommendations