Facile preparation of MnO2@C composite nanorods for high-performance supercapacitors

A Correction to this article was published on 24 January 2019

This article has been updated

Abstract

Novel MnO2@C composite nanorods were successfully prepared by a facile solvothermal method. The results showed that a uniform carbon layer was formed around the MnO2 nanorods. The carbon layer provided a highly conductive pathway to boost the charge transport involved during the capacitance generation. The electrochemical properties of MnO2@C composite nanorods were investigated by cyclic voltammetry and galvanostatic charge–discharge. The composites as electrode materials of supercapacitors exhibited high specific capacitance (295 F/g) compared with MnO2 nanorods (149 F/g) with a wide operation window (0–1.0 V). The electrochemical impedance spectroscopic studies showed the charge-transfer resistance (Rct) of the MnO2@C composite nanorods (1.10 Ω) was much lower than that of pure MnO2 (2.53 Ω). Moreover, the MnO2@C composite nanorods exhibited excellent cycling behavior with no more than 5 % capacitance loss after 2000 cycles. These results indicated that the MnO2@C composite nanorods could be a promising electrode material for high-performance electrochemical capacitors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Change history

  • 24 January 2019

    The original version of this article was inadvertently misplaced Fig. 1a and Fig. 1c with each other. The correct results are showed as follows.

  • 24 January 2019

    The original version of this article was inadvertently misplaced Fig. 1a and Fig. 1c with each other. The correct results are showed as follows.

  • 24 January 2019

    The original version of this article was inadvertently misplaced Fig. 1a and Fig. 1c with each other. The correct results are showed as follows.

References

  1. 1.

    S. Giri, D. Ghosh, C.K. Das, Adv. Funct. Mater. 24, 1312 (2014)

    Article  Google Scholar 

  2. 2.

    H.L. Wang, Y.Y. Liang, T. Mirfakhrai, Z. Chen, H.S. Casalongue, H.J. Dai, Nano Res. 4, 729 (2011)

    Article  Google Scholar 

  3. 3.

    J.L. Shen, C.Y. Yang, X.W. Li, G.C. Wang, A.C.S. Appl, Mater. Interfaces 5, 8467 (2013)

    Article  Google Scholar 

  4. 4.

    Z. Hai, L. Gao, Q. Zhang, H. Xu, D. Cui, Z. Zhang, D. Tsoukalas, J. Tang, S. Yan, C. Xue, Appl. Surf. Sci. 361, 57 (2016)

    Article  Google Scholar 

  5. 5.

    Z. Yu, L. Chen, L. Song, Y. Zhu, H. Ji, S. Yu, Nano Energy 15, 235 (2015)

    Article  Google Scholar 

  6. 6.

    J. Cai, H. Niu, Z. Li, Y. Du, P. Cizek, Z. Xie, H. Xiong, T. Lin, ACS Appl. Mater. Interfaces 7, 14946 (2015)

    Article  Google Scholar 

  7. 7.

    G.P. Wang, L. Zhang, J.J. Zhang, Chem. Soc. Rev. 41, 797 (2012)

    Article  Google Scholar 

  8. 8.

    P. Vigneshwaran, M. Kandiban, N.S. Kumar, V. Venkatachalam, R. Jayavel, I. Potheher, J. Mater. Sci.: Mater. Electron. 27, 4653 (2016)

    Google Scholar 

  9. 9.

    J.P. Liu, J. Jiang, C.W. Cheng, H.X. Li, J.X. Zhang, H. Gong, H.J. Fan, Adv. Mater. 23, 2076 (2011)

    Article  Google Scholar 

  10. 10.

    K. Xu, Q. Ren, Q. Liu, W. Li, R. Zou, J. Hu, RSC Adv. 5, 44642 (2015)

    Article  Google Scholar 

  11. 11.

    F. Hekmat, B. Sohrabi, M.S. Rahmanifar, A. Jalali, Appl. Surf. Sci. 341, 109 (2015)

    Article  Google Scholar 

  12. 12.

    L. Pan, L. Shen, L. Li, Q. Zhu, J. Mater. Sci.: Mater. Electron. 27, 3065 (2016)

    Google Scholar 

  13. 13.

    S. Vijayakumar, S. Nagamuthu, G. Muralidharan, ACS Appl. Mater. Interfaces 5, 2188 (2013)

    Article  Google Scholar 

  14. 14.

    B. Saravanakumar, K.K. Purushothaman, G. Muralidharan, ACS Appl. Mater. Interfaces 4, 4484 (2012)

    Article  Google Scholar 

  15. 15.

    H. Chen, S. Zhou, M. Chen, L. Wu, J. Mater. Chem. 22, 25207 (2012)

    Article  Google Scholar 

  16. 16.

    H. Chen, L. Hu, M. Chen, Y. Yan, L. Wu, Adv. Funct. Mater. 24, 934 (2014)

    Article  Google Scholar 

  17. 17.

    B. Wang, T. Zhu, H.B. Wu, R. Xu, J.S. Chen, X.W. Lou, Nanoscale 4, 2145 (2012)

    Article  Google Scholar 

  18. 18.

    P. Simon, Y. Gogotsi, Nat. Mater. 7, 845 (2008)

    Article  Google Scholar 

  19. 19.

    M. Inagaki, H. Konno, O. Tanaike, J. Power Sources 195, 7880 (2010)

    Article  Google Scholar 

  20. 20.

    H. Chen, S. Zhou, L. Wu, ACS Appl. Mater. Interfaces 6, 8621 (2014)

    Article  Google Scholar 

  21. 21.

    W. Wei, X. Cui, W. Chen, D.G. Ivey, Chem. Soc. Rev. 40, 1697 (2011)

    Article  Google Scholar 

  22. 22.

    S.W. Zhang, G.Z. Chen, Energy Mater. 3, 186 (2008)

    Article  Google Scholar 

  23. 23.

    Y. Xiong, M. Zhou, H. Chen, L. Feng, Z. Wang, X. Yan, S. Guan, Appl. Surf. Sci. 357, 1024 (2015)

    Article  Google Scholar 

  24. 24.

    B. Wang, J. Qiu, H. Feng, N. Wang, E. Sakai, T. Komiyama, Electrochim. Acta 212, 710 (2016)

    Article  Google Scholar 

  25. 25.

    X. Wang, Q. Weng, Y. Yang, Y. Bando, D. Golberg, Chem. Soc. Rev. 45, 4042 (2016)

    Article  Google Scholar 

  26. 26.

    Y. Liu, M. Zhang, L. Li, X. Zhang, Appl. Catal. B: Environ. 160–161, 757 (2014)

    Article  Google Scholar 

  27. 27.

    B. Shen, J. Lang, R. Guo, X. Zhang, X. Yan, ACS Appl. Mater. Interfaces 7, 25378 (2015)

    Article  Google Scholar 

  28. 28.

    W.K. Chee, H.N. Lim, Z. Zainal, N.M. Huang, I. Harrison, Y. Andou, J. Phys. Chem. C 120, 4153 (2016)

    Article  Google Scholar 

  29. 29.

    M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Nano Lett. 9, 1872 (2009)

    Article  Google Scholar 

  30. 30.

    G. Yu, L. Hu, M. Vosgueritchian, H. Wang, X. Xie, J.R. McDonough, X. Cui, Y. Cui, Z. Bao, Nano Lett. 11, 2905 (2011)

    Article  Google Scholar 

  31. 31.

    Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, ACS Nano 4, 1963 (2010)

    Article  Google Scholar 

  32. 32.

    D.W. Wang, F. Li, J. Zhao, W. Ren, Z.G. Chen, J. Tan, Z.S. Wu, I. Gentle, G.Q. Lu, H.M. Cheng, ACS Nano 3, 1745 (2009)

    Article  Google Scholar 

  33. 33.

    C. Dekker, Phys. Today 52, 22 (1999)

    Article  Google Scholar 

  34. 34.

    G. Zhao, H. Li, Appl. Surf. Sci. 254, 3232 (2008)

    Article  Google Scholar 

  35. 35.

    D.W. Kim, I.S. Hwang, S.J. Kwon, H.Y. Kang, K.S. Park, Y.J. Choi, K.J. Choi, J.G. Park, Nano Lett. 7, 3041 (2007)

    Article  Google Scholar 

  36. 36.

    Y.R. Ahn, C.R. Park, S.M. Jo, D.Y. Kim, Appl. Phys. Lett. 90, 122106 (2007)

    Article  Google Scholar 

  37. 37.

    M.G. Dobb, H. Guo, D.J. Johnson, Carbon 33, 1115 (1995)

    Article  Google Scholar 

  38. 38.

    G.M. Pennock, G.H. Taylor, G.J.D. Fitz, Carbon 31, 591 (1993)

    Article  Google Scholar 

  39. 39.

    L.X. Yang, S.L. Luo, S.H. Liu, Q.Y. Cai, J. Phys. Chem. C 112, 8939 (2008)

    Article  Google Scholar 

  40. 40.

    W.J. Ren, Z.H. Ai, F.L. Jia, L.Z. Zhang, X.X. Fan, Z.G. Zou, Appl. Catal. B 69, 138 (2007)

    Article  Google Scholar 

  41. 41.

    M. Toupin, T. Brousse, D. Belanger, Chem. Mater. 16, 3184 (2004)

    Article  Google Scholar 

  42. 42.

    S.W. Lee, J. Kim, S. Chen, P.T. Hammond, Y. Shao-Horn, ACS Nano 4, 3889 (2010)

    Article  Google Scholar 

  43. 43.

    X.H. Yang, Y.G. Wang, H.M. Xiong, Y.Y. Xia, Electrochim. Acta 53, 752 (2007)

    Article  Google Scholar 

  44. 44.

    R.K. Sharma, H.S. Oh, Y.G. Shul, H. Kim, J. Power Sources 173, 1024 (2007)

    Article  Google Scholar 

  45. 45.

    J. Yan, E. Khoo, A. Sumboja, P.S. Lee, ACS Nano 4, 4247 (2010)

    Article  Google Scholar 

  46. 46.

    J.B. Mu, B. Chen, Z.C. Guo, M.Y. Zhang, Z.Y. Zhang, C.L. Shao, Y.C. Liu, J. Colloid Interface Sci. 356, 706 (2011)

    Article  Google Scholar 

  47. 47.

    P.M. Kharade, S.M. Mane, S.B. Kulkarni, P.B. Joshi, D.J. Salunkhe, J. Mater. Sci.: Mater. Electron. 27, 3499 (2016)

    Google Scholar 

Download references

Acknowledgments

The present work is supported financially by the National Natural Science Foundation of China (Grant Nos. 51302063 and 51402082), the Natural Science Foundation of Hebei Province (Grant Nos. EB2014402077 and 2015402058), Program for the Top Young Talents of Higher Learning Institutions of Hebei (Grant Nos. BJ2014018 and BJ2014016).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jingbo Mu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Mu, J., Che, H. et al. Facile preparation of MnO2@C composite nanorods for high-performance supercapacitors. J Mater Sci: Mater Electron 27, 13314–13322 (2016). https://doi.org/10.1007/s10854-016-5481-6

Download citation

Keywords

  • High Resolution Transmission Electron Microscopy
  • MnO2
  • Specific Capacitance
  • High Resolution Transmission Electron Microscopy
  • Carbon Layer