Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 12, pp 13259–13265 | Cite as

Signature of multiferroicity and impedance analysis of Co1−xZnxFe2−xLaxO4 nanoparticles

  • S. Shankar
  • Manish Kumar
  • P. Brijmohan
  • Shiv Kumar
  • O. P. Thakur
  • Anup K. Ghosh
Article

Abstract

Effects of Zn2+/La3+ co-doping on multiferroic and impedance properties of co-precipitation derived Co1−xZnxFe2−xLaxO4 (x = 0.0, 0.1 and 0.3) nanoparticles have been investigated. The powder X-ray diffraction study confirms the pure phase, cubic spinal structure and particle size varies between 20 and 22 nm. The particle size decreases with increase in co-substitution indicating the short range ordering in CoFe2O4. The relaxations in dielectric constant follow Maxwell–Wagner polarization and arise out of charge transfer of Co and Fe ions in multi-oxidation states. The co-substitution of Zn2+/La3+ in CoFe2O4 at A and B sites respectively results in improvement of Nquist plot and impedance of the nanoparticle which confirms space charge polarization caused by piling of charges at the interface of grain and grain boundries. An unusual relaxation behavior is also observed in co-substituted CoFe2O4 which may be useful in enhancing the multiferroic properties at room temperature. It could be noted the GBs are more resistive as compared to the grains, resulting in high impedance value and non-Debye type behavior in the Co1−xZnxFe2−xLaxO4 nano particles. Low and stable coercivity (Hc) of 393.13 Oe have been observed and a stable saturation magnetization has been achieved at room temperature. P–E loops have rounded corners which may be the due to the aggregation of CoFe2O4 nanoparticles with each other resulting out of their strong magnetization. Simultaneous occurrence of saturation magnetization and weak ferroelectricity (P–E loop) with high values of impedance and dielectric constant confirm the signature of multiferroicity in Co1−xZnxFe2−xLaxO4 nanoparticles.

Keywords

Ferrite Saturation Magnetization BiFeO3 CoFe2O4 Cobalt Ferrite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Authors are thankful to NPL, New Delhi, India and IIT-BHU, Varanasi, India for their characterization facilities.

References

  1. 1.
    B.P. Jacob, S. Thankachan, S. Xavier, E.M. Mohammed, J. Alloys Compd. 541, 29 (2012)CrossRefGoogle Scholar
  2. 2.
    N.B. Velhal, N.D. Patil, A.R. Shelke, N.G. Deshpande, V.R. Puri, AIP Adv. 5, 097166 (2015)CrossRefGoogle Scholar
  3. 3.
    S.W. Cheong, M. Mostovoy, Nat. Mater. 6, 13 (2007)CrossRefGoogle Scholar
  4. 4.
    Md.T. Rahman, C.V. Ramana, J. Appl. Phys. 116, 164108 (2014)CrossRefGoogle Scholar
  5. 5.
    R. Ianoş, Mater. Lett. 135, 24 (2014)CrossRefGoogle Scholar
  6. 6.
    G.D. Dwivedi, K.F. Tseng, C.L. Chan, P. Shahi, J. Lourembam, B. Chatterjee, A.K. Ghosh, H.D. Yang, S. Chatterjee, Phys. Rev. B 82, 134428 (2010)CrossRefGoogle Scholar
  7. 7.
    P. Kumar, S.K. Sharma, M. Knobel, J. Chand, M. Singh, J. Electroceram. 27, 51 (2011)CrossRefGoogle Scholar
  8. 8.
    C.Y. Tsay, Y.H. Lin, S.U. Jen, Ceram. Int. 41, 5531 (2015)CrossRefGoogle Scholar
  9. 9.
    H. Inaba, J. Mater. Sci. 32, 1867 (1997)CrossRefGoogle Scholar
  10. 10.
    R.M. Anderson, C.R. Vestal, A.C.S. Samia, Z.J. Zhang, Appl. Phys. Lett. 84, 3115 (2004)CrossRefGoogle Scholar
  11. 11.
    G. Srinivasan, E.T. Rasmussen, R. Hayes, Phys. Rev. B 67, 014418 (2003)CrossRefGoogle Scholar
  12. 12.
    J.P. Zhou, L. Lv, X.Z. Chen, J. Ceram. Proc. Res. 11, 263 (2010)Google Scholar
  13. 13.
    Y.D. Kolekar, L.J. Sanchez, C.V. Ramana, J. Appl. Phys. 115, 144106 (2014)CrossRefGoogle Scholar
  14. 14.
    J.Y. Zhai, N. Cai, Y.H. Lin, C.W. Nan, Mater. Sci. Eng. B Solid 99, 329 (2003)CrossRefGoogle Scholar
  15. 15.
    M.M. Kumar, A. Srinivas, S.V. Suryanarayana, J. Appl. Phys. 87, 855 (2000)CrossRefGoogle Scholar
  16. 16.
    M.G. Chourashiya, J.Y. Patil, S.H. Pawar, L.D. Jadhav, Mater. Chem. Phys. 109, 39 (2008)CrossRefGoogle Scholar
  17. 17.
    R. Valenzuela, Magnetic Ceramics (Cambridge University Press, Cambridge, 1984), pp. 191–212Google Scholar
  18. 18.
    G.A. Petitt, D.W. Forester, Phys. Rev. B 4, 3912 (1971)CrossRefGoogle Scholar
  19. 19.
    B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Massachusetts, 1978)Google Scholar
  20. 20.
    A. Rana, O.P. Thakur, V. Kumar, Mater. Lett. 65, 3191 (2011)CrossRefGoogle Scholar
  21. 21.
    M. Kumar, S. Shankar, R.K. Kotnala, O. Parkash, J. Alloys Compd. 577, 222 (2013)CrossRefGoogle Scholar
  22. 22.
    D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)CrossRefGoogle Scholar
  23. 23.
    H. Ye, R.B. Jackman, P. Hing, J. Appl. Phys. 94, 7878 (2003)CrossRefGoogle Scholar
  24. 24.
    Md.T. Rahman, M. Vargas, C.V. Ramana, J. Alloys Compd. 617, 547 (2014)CrossRefGoogle Scholar
  25. 25.
    J. Plocharski, W. Wieczoreck, Solid State Ion. 28–30, 979 (1988)CrossRefGoogle Scholar
  26. 26.
    B. Behera, P. Nayak, R.N.P. Choudhary, Mater. Res. Bull. 43, 401 (2008)CrossRefGoogle Scholar
  27. 27.
    A.K. Jonscher, Nature 267, 673 (1977)CrossRefGoogle Scholar
  28. 28.
    P. Ganguly, A.K. Jha, K.L. Deori, Solid State Commun. 146, 472 (2008)CrossRefGoogle Scholar
  29. 29.
    J.G. Wu, J. Wang, J. Appl. Phys. 105, 124107 (2009)CrossRefGoogle Scholar
  30. 30.
    N. Nirose, A.R. West, J. Am. Ceram. Soc. 79, 1633 (1996)CrossRefGoogle Scholar
  31. 31.
    M.V. Reddy, J.P. Paul, D. Das, AIP Conf. Proc. 1536, 1015 (2013)CrossRefGoogle Scholar
  32. 32.
    N. Rezlescu, E. Rezlescu, C. Pasnicu, M.L. Craus, J. Phys.: Condens. Matter 6, 5707 (1994)Google Scholar
  33. 33.
    S. Singhal, K.J. Chandra, J. Solid State Chem. 180, 296 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • S. Shankar
    • 2
    • 3
  • Manish Kumar
    • 1
    • 2
    • 3
  • P. Brijmohan
    • 1
  • Shiv Kumar
    • 1
  • O. P. Thakur
    • 3
  • Anup K. Ghosh
    • 1
  1. 1.Materials Research Lab., Department of PhysicsBanaras Hindu UniversityVaranasiIndia
  2. 2.Department of Physics, ARSD CollegeUniversity of DelhiNew DelhiIndia
  3. 3.Department of PhysicsNSITNew DelhiIndia

Personalised recommendations