Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 12, pp 13242–13248 | Cite as

Structural, optical and electrical investigations on Nb doped TiO2 radio-frequency sputtered thin films from a powder target

  • I. Ben Jemaa
  • F. Chaabouni
  • L. Presmanes
  • Y. Thimont
  • M. Abaab
  • A. Barnabe
  • P. Tailhades


Pure and Nb doped TiO2 (TNO) thin films were deposited onto glass substrates by RF magnetron sputtering technique using a Nb and TiO2 mixture powder target at room temperature to explore the possibility of producing sputtered TNO films by a low cost process. The effect of Nb doping on the structure, morphology, optical and electrical properties of the prepared films was studied by systematically varying the Nb content from 2 to 6 wt%. GXRD results show that the deposited films mainly possess rutile phase with the (110) orientation. Raman spectra confirm that the deposited films are predominantly rutile phase. Surface roughness increases with the increase of Nb doping concentration , which may be attributed to the structural changes in the film due to the incorporation of Nb into the TiO2 lattice. Optical transmittance in the visible range reaches 85 % for the undoped films then it decreases as the doping content increases. Doping by niobium resulted in a slight increase in the optical band gap energy of the films due to the Burstein–Moss effect. The resistivity measurement of TNO films reveals that the Nb doping improves the electrical conductivity of the deposited films compared to the undoped one. The best value was observed for films deposited at 4 wt% Nb.


TiO2 Rutile Rutile Phase TiO2 Thin Film Urbach Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S.S. Pradhan, S.K. Pradhan, V. Bhavanasi, Thin Solid Films 520, 1809 (2012)CrossRefGoogle Scholar
  2. 2.
    S.-F. Wang, Y.-F. Hsu, R.-L. Lee, Y.-S. Lee, Appl. Surf. Sci. 229, 140–147 (2004)CrossRefGoogle Scholar
  3. 3.
    R. Subasri, M. Tripathi, K. Murugan, J. Revathi, G.V.N. Rao, T.N. Rao, Mater. Chem. Phys. 124, 63–68 (2010)CrossRefGoogle Scholar
  4. 4.
    T. Potlog, P. Dumitriu, M. Dobromir, A. Manole, D. Luca, Mater. Des. 85, 558–563 (2015)Google Scholar
  5. 5.
    A. Kubacka, G. Colόn, M. Fernández-García, Catal. Today 143, 286–292 (2009)CrossRefGoogle Scholar
  6. 6.
    A.V. Manole, M. Dobromir, M. Gîrtan, R. Mallet, G. Rusu, D. Luca, Ceram. Int. 39, 4771–4776 (2013)CrossRefGoogle Scholar
  7. 7.
    M.Z. Atashbar, H.T. Sun, B. Gong, W. Wlodarski, R. Lamb, Thin Solid Films 326, 238–244 (1998)CrossRefGoogle Scholar
  8. 8.
    T. Hitosugi, A. Ueda, S. Nakao, N. Yamada, Y. Furubayashi, Y. Hirose, T. Shimada, T. Hasegawa, Appl. Phys. Lett. 90, 212106 (2007)CrossRefGoogle Scholar
  9. 9.
    Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, G. Kinoda, Y. Hirose, T. Shimada, T. Hasegawa, Appl. Phys. Lett. 86, 252101 (2005)CrossRefGoogle Scholar
  10. 10.
    N. Oka, Y. Sanno, J. Jia, S.-I. Nakamura, Y. Shigesato, Appl. Surf. Sci. 301, 551–556 (2014)CrossRefGoogle Scholar
  11. 11.
    P.B. Nair, V.B. Justinvictor, G.P. Daniel, K. Joy, V. Ramakrishnan, P.V. Thomas, Appl. Surf. Sci. 257, 10869–10875 (2011)CrossRefGoogle Scholar
  12. 12.
    Y. Bouznit, Y. Beggah, K. Djessas, J. Sol-Gel Sci. Technol. 61, 449 (2012)CrossRefGoogle Scholar
  13. 13.
    W. Theiss; Hard & Software.
  14. 14.
    R. Swanepoel, J. Phys. E Sci. Instrum. 16, 1214 (1983)CrossRefGoogle Scholar
  15. 15.
    A.R. Denton, N.W. Ashcroft, Phys. Rev. A 43, 3161 (1991)CrossRefGoogle Scholar
  16. 16.
    R.D. Shannon, Acta Cryst. A 32, 751–767 (1976)CrossRefGoogle Scholar
  17. 17.
    W. Zhang, S. Zhu, Y. Li, F. Wang, J. Mater. Sci. Technol. 20, 31–34 (2004)Google Scholar
  18. 18.
    A. Li Bassi, D. Cattaneo, V. Russo, C.E. Bottani, E. Barborini, T. Mazza, P. Piseri, P. Milani, F.O. Ernst, K. Wegner, S.E. Pratsinis, J. Appl. Phys. 98, 074305 (2005)CrossRefGoogle Scholar
  19. 19.
    H. Wang, Y. Li, X. Ba, L. Huang, Y. Yu, Appl. Surf. Sci. 345, 49–56 (2015)CrossRefGoogle Scholar
  20. 20.
    C. Tealdi, E. Quartarone, P. Galinetto, M.S. Grandi, P. Mustarelli, J. Solid State Chem. 199, 1–6 (2013)CrossRefGoogle Scholar
  21. 21.
    A.L.J. Pereira, L. Gracia, A. Beltrán, P.N. Lisboa-Filho, J.H.D. da Silva, J. Andrés, J. Phys. Chem. C 116, 8753–8762 (2012)CrossRefGoogle Scholar
  22. 22.
    P. Merle, J. Pascual, J. Camassel, H. Mathieu, Phys. Rev. B 21, 1617 (1980)CrossRefGoogle Scholar
  23. 23.
    X.Y. Li, H.J. Li, Z.J. Wang, H. Xia, Z.Y. Xiong, J.X. Wang, B.C. Yang, Opt. Commun. 282, 247 (2009)CrossRefGoogle Scholar
  24. 24.
    P. Salvador, Sol. Energy Mater. 6, 241 (1982)CrossRefGoogle Scholar
  25. 25.
    C.M. Maghanga, G.A. Niklasson, C.G. Granqvist, Thin Solid Films 518, 1254–1258 (2009)CrossRefGoogle Scholar
  26. 26.
    Y. Sato, H. AKizuki, T. Kamiyama, Y. Shigesato, Thin Solid Films 516, 5758–5762 (2008)CrossRefGoogle Scholar
  27. 27.
    K.-H. Hung, P.-W. Lee, W.-C. Hsu, H.C. Hsing, H.-T. Chang, M.-S. Wong, J. Alloys Compd. 509, 10190–10194 (2011)CrossRefGoogle Scholar
  28. 28.
    T.S. Moss, Proc. Phys. Soc. B 67, 775–782 (1954)CrossRefGoogle Scholar
  29. 29.
    Y. Zhang, Y. Shen, F. Gu, M. Wu, Y. Xie, J. Zhang, Appl. Surf. Sci. 256, 85–89 (2009)CrossRefGoogle Scholar
  30. 30.
    K. Boubaker, Eur. Phys. J. Plus 126, 1–4 (2011)CrossRefGoogle Scholar
  31. 31.
    S. Sebastian, M.A. Khadar, Bull. Mater. Sci. 27, 207–212 (2004)CrossRefGoogle Scholar
  32. 32.
    G. Haacke, J. Appl. Phys. 47, 4086 (1976)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • I. Ben Jemaa
    • 1
    • 2
  • F. Chaabouni
    • 1
  • L. Presmanes
    • 3
  • Y. Thimont
    • 3
  • M. Abaab
    • 1
  • A. Barnabe
    • 3
  • P. Tailhades
    • 3
  1. 1.Ecole Nationale d’Ingénieurs de Tunis, Laboratoire de Photovoltaïque et Matériaux Semi-conducteursUniversité de Tunis El ManarTunisTunisia
  2. 2.Département de Physique, Faculté des Sciences de BizerteUniversité de CarthageZarzouna, BizerteTunisia
  3. 3.CIRIMAT, Université de Toulouse, CNRS, INPT, UPSUniversité de Toulouse 3 Paul SabatierToulouse Cedex 9France

Personalised recommendations