Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 12, pp 13148–13153 | Cite as

Effect of thickness on crystallization behavior in GeSb9 phase change films

  • Wen Zhang
  • Dongyan Wu
  • Yifeng Hu
  • Airu Jiang
  • Junshu Xu
  • Hao Liu
  • Shupo Bu
  • Ruihua Shi
Article
  • 128 Downloads

Abstract

Phase change behavior in GeSb9 thin films with different thickness were investigated by utilizing in situ resistance measurements. It is found that the crystallization temperatures and resistances increase with decreasing of film thickness. The analysis of X-ray diffraction indicated that the grain size decreases and the crystallization is suppressed by decreasing film thickness. The surface roughness of thin films was measured by atomic forced microscopy. The obtained values of Avrami indexes indicate that the nucleation rate decreases with decreasing the film thickness. The phase change memory devices based on GeSb9 thin films were fabricated and the lower RESET power consumption was observed for thinner film.

Keywords

Phase Change Material Phase Change Memory Reset Operation Decrease Film Thickness Phase Change Memory Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by Suzhou Science and Technology Bureau (SYG201534) and Natural Science Foundation of Jiangsu Province (BK2015020024) and Changzhou Science and Technology Bureau (No. CJ20160010) and sponsored by Qing Lan Project.

References

  1. 1.
    Y.F. Hu, H. Zou, L. Yuan, J.Z. Xue, Y.X. Sui, W.H. Wu, J.H. Zhang, X.Q. Zhu, S.N. Song, Z.T. Song, Scripta Mater. 115, 19 (2016)CrossRefGoogle Scholar
  2. 2.
    J.Y. Cho, D.H. Kim, Y.J. Park, T.Y. Yang, Y.Y. Lee, Y.C. Joo, Acta Mater. 94, 143 (2015)CrossRefGoogle Scholar
  3. 3.
    Y.H. Zheng, Y. Cheng, M. Zhu, X.L. Ji, Q. Wang, S.N. Song, Z.T. Song, W.L. Liu, S.L. Feng, Appl. Phys. Lett. 108, 052107 (2016)CrossRefGoogle Scholar
  4. 4.
    Y.G. Lu, S.N. Song, Z.T. Song, B. Liu, J. Appl. Phys. 109, 064503 (2011)CrossRefGoogle Scholar
  5. 5.
    X.Q. Zhu, Y.F. Hu, H. Zou, J.H. Zhang, Y.X. Sui, W.H. Wu, L. Yuan, L.J. Zhai, S.N. Song, Z.T. Song, Scripta Mater. 121, 66 (2016)CrossRefGoogle Scholar
  6. 6.
    L. Zheng, X.M. Gu, L.G. Ma, X.S. Wu, X.Q. Zhu, Y.X. Sui, J. Appl. Phys. 119, 044901 (2016)CrossRefGoogle Scholar
  7. 7.
    C. Huai-Yu, S. Raoux, C. Yi-Chou, J. Appl. Phys. 107, 074308 (2010)CrossRefGoogle Scholar
  8. 8.
    T. Zhang, Z.T. Song, F. Wang, B. Liu, S.L. Feng, B. Chen, Appl. Phys. Lett. 91, 221102 (2007)CrossRefGoogle Scholar
  9. 9.
    Y. Won, J. Lee, M. Asheghi, T.W. Kenny, K.E. Goodson, Appl. Phys. Lett. 100, 161905 (2012)CrossRefGoogle Scholar
  10. 10.
    L. Bong-Sub, R.M. Shelby, S. Raoux, C.T. Retter, G.W. Burr, S.N. Bogle, K. Darmawikarta, S.G. Bishop, J.R. Abelson, J. Appl. Phys. 115, 063506 (2014)CrossRefGoogle Scholar
  11. 11.
    Y.F. Gu, T. Zhang, Z.T. Song, Y.B. Liu, B. Liu, S.L. Feng, Appl. Phys. A-Mater. 99, 205 (2009)CrossRefGoogle Scholar
  12. 12.
    S.T. Mahmoud, N. Qamhieh, A.I. Ayesh, Phys. Status Solidi A 211, 645 (2014)CrossRefGoogle Scholar
  13. 13.
    S. Raoux, H.Y. Cheng, J.L. Jordan-Sweet, B. Munoz, M. Hitzbleck, Appl. Phys. Lett. 94, 3 (2009)CrossRefGoogle Scholar
  14. 14.
    Y.F. Hu, X.Q. Zhu, H. Zou, J.H. Zhang, L. Yuan, J.Z. Xue, Y.X. Sui, W.H. Wu, S.N. Song, Z.T. Song, Appl. Phys. Lett. 108, 223103 (2016)CrossRefGoogle Scholar
  15. 15.
    Y.G. Lu, S.N. Song, X. Shen, Z.T. Song, G.X. Wang, S.X. Dai, Thin Solid Films 589, 215 (2015)CrossRefGoogle Scholar
  16. 16.
    Y.F. Hu, X.Q. Zhu, H. Zou, Y. Lu, J.Z. Xue, Y.X. Sui, W.H. Wu, L. Yuan, S.N. Song, Z.T. Song, J. Mater. Sci.-Mater. El. 26, 7757–7762 (2015)CrossRefGoogle Scholar
  17. 17.
    X.Q. Zhu, Y.F. Hu, H. Zou, Y.X. Sui, J.Z. Xue, D.H. Shen, J.H. Zhang, S.N. Song, Z.T. Song, S.P. Sun, J. Mater. Sci.-Mater. El. 26, 1212 (2014)CrossRefGoogle Scholar
  18. 18.
    X.Q. Zhu, Y.F. Hu, L. Yuan, Y.X. Sui, J.Z. Xue, D.H. Shen, J.H. Zhang, S.N. Song, Z.T. Song, J. Electron. Mater. 44, 3322 (2015)CrossRefGoogle Scholar
  19. 19.
    Y.G. Lu, S.N. Song, X. Shen, G.X. Wang, L.C. Wu, Z.T. Song, B. Liu, S.X. Dai, J. Alloy. Compd. 586, 669 (2014)CrossRefGoogle Scholar
  20. 20.
    Y.F. Hu, H. Zou, J.H. Zhang, J.Z. Xue, Y.X. Sui, W.H. Wu, L. Yuan, X.Q. Zhu, S.N. Song, Z.T. Song, Appl. Phys. Lett. 107, 263105 (2015)CrossRefGoogle Scholar
  21. 21.
    Y.G. Lu, S.N. Song, Z.T. Song, W.C. Ren, Y.L. Xiong, F. Rao, L.C. Wu, Y. Cheng, B. Liu, Scripta Mater. 66, 702 (2012)CrossRefGoogle Scholar
  22. 22.
    Y.Q. Zhu, Z.H. Zhang, S.N. Song, H.Q. Xie, Z.T. Song, X.Y. Li, L.L. Shen, L. Li, L.C. Wu, B. Liu, Mater. Res. Bull. 64, 333 (2015)CrossRefGoogle Scholar
  23. 23.
    W.H. Wu, Y.F. Hu, X.Q. Zhu, Y.X. Sui, L. Yuan, L. Zheng, H. Zou, Y.X. Sui, S.N. Song, Z.T. Song, J. Mater. Sci.-Mater. El. 27, 2183–2188 (2016)CrossRefGoogle Scholar
  24. 24.
    H. Huang, S.M. Li, F.X. Zhai, Y. Wang, T.S. Lai, Y.Q. Wu, F.X. Gan, Mater. Chem. Phys. 128, 405 (2011)CrossRefGoogle Scholar
  25. 25.
    Y.F. Hu, S.M. Li, T.S. Lai, S.N. Song, Z.T. Song, J.W. Zhai, J. Alloy. Compd. 581, 515 (2013)CrossRefGoogle Scholar
  26. 26.
    X.Q. Wei, L.P. Shi, C.C.T.R. Zhao, K. Hock, Jpn. J. Appl. Phys. 46, 2211 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringSuzhou Institute of Industrial TechnologySuzhouChina
  2. 2.School of Mathematics and PhysicsJiangsu Teachers University of TechnologyChangzhouChina

Personalised recommendations