Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 12, pp 13075–13079 | Cite as

Optical, dielectric and ferroelectric properties of KTa0.63Nb0.37O3 and Cu doped KTa0.63Nb0.37O3 single crystals

  • Xu-Ping Wang
  • Qing-Gang Li
  • Yu-Guo Yang
  • Yuan-Yuan Zhang
  • Xian-Shun Lv
  • Lei Wei
  • Bing Liu
  • Jian-Hua Xu
  • Ling Ma
  • Ji-Yang Wang
Article

Abstract

KTa0.63Nb0.37O3 and Cu doped KTa0.63Nb0.37O3 single crystals were grown by the Czochralski method. The phase, optical and electric properties were characterized. The differences of XRD and color for KTa0.63Nb0.37O3 and Cu doped KTa0.63Nb0.37O3 single crystals are observed. Emission bands corresponding to Cu0 and Cu+ except of emission bands originating from KTa0.6Nb0.4O3 host were observed in the emission spectra of the KTa0.63Nb0.37O3:Cu single crystals. On the basis of these differences, we speculate the dominating existence of Cu0 and residual existence of Cu+ in KTa0.63Nb0.37O3 single crystal. The existence of Cu0 in KTa0.63Nb0.37O3 single crystal influences the optical and dielectric properties of crystal. The higher dielectric constant of Cu doped KTa0.63Nb0.37O3 single crystal than that of pure KTa0.63Nb0.37O3 single crystal is induced by the decrease of the resistance of the grain.

Keywords

Dielectric Constant Czochralski Method Reflective Index Broad Emission Band KNbO3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work is supported financially by the National Science Foundation of China (Grant No. 51302158), Natural Science Foundation of Shandong Province (Grant No. ZR2014EMQ004), Youth Foundation of Shandong Academy of Sciences (Grant Nos. 2014QN027 and 2014QN028) and China Postdoctoral Science Foundation (Grant No. 2015M582090).

References

  1. 1.
    P.K. Panda, J. Mater. Sci. 44, 5049 (2009)CrossRefGoogle Scholar
  2. 2.
    X.-G. Tang, J. Wang, X.-X. Wang, H.L.-W. Chan, Chem. Mater. 16, 5293 (2004)CrossRefGoogle Scholar
  3. 3.
    S.K. Das, B.K. Roul, J. Mater. Sci.: Mater. Electron. 26, 5833 (2015)Google Scholar
  4. 4.
    H. Zhao, K. Cai, Z. Cheng, Z. Ma, H. Kimura, T. Jia, J. Mater. Sci.: Mater. Electron. 27, 5613 (2016)Google Scholar
  5. 5.
    X. Wang, J. Wang, Y. Yu, H. Zhang, R.I. Boughton, J. Cryst. Growth 293, 398 (2006)CrossRefGoogle Scholar
  6. 6.
    S. Triebwasser, Phys. Rev. 114, 63 (1959)CrossRefGoogle Scholar
  7. 7.
    X. Wang, Y. Yang, Y. Zhang, X. Lv, L. Wei, H. Yu, B. Liu, Opt. Mater. 46, 175 (2015)CrossRefGoogle Scholar
  8. 8.
    X. Zhang, H. Zhao, X. Wang, B. Liu, J. Yu, X. Zhao, Ceram. Int. 41, S197 (2015)CrossRefGoogle Scholar
  9. 9.
    K. Yoshikawa, T. Asaka, M. Higuchi, Y. Azuma, K. Katayama, Ceram. Int. 34, 609 (2008)CrossRefGoogle Scholar
  10. 10.
    S. Swain, P. Kumar, D.K. Agrawal, Sonia, Ceram. Int. 39, 3205 (2013)CrossRefGoogle Scholar
  11. 11.
    X.-P. Wang, B. Liu, Y.-Y. Zhang, X.-S. Lv, Y.-G. Yang, J. Mater. Sci.: Mater. Electron. 25, 2939 (2014)Google Scholar
  12. 12.
    H. Gu, K. Zhu, J. Qiu, Y. Cao, H. Ji, Adv. Powder Techno. 23, 558 (2012)CrossRefGoogle Scholar
  13. 13.
    W. Yang, Z. Zhou, B. Yang, Y. Jiang, Y. Pei, H. Sun, Y. Wang, Appl. Surf. Sci. 258, 3986 (2012)CrossRefGoogle Scholar
  14. 14.
    B. Liu, X. Wang, Y. Zhang, X. Lv, Y. Yang, Ionics 20, 1795 (2014)CrossRefGoogle Scholar
  15. 15.
    M. Wang, J.Y. Wang, Y.G. Liu, Q.C. Guan, J.Q. Wei, Ferroelectrics 132, 49 (1992)CrossRefGoogle Scholar
  16. 16.
    P. Ben Ishai, C.E.M. de Oliveira, Y. Ryabov, A.J. Agranat, Y. Feldman, J. Non-Cryst Solids 351, 2786 (2005)CrossRefGoogle Scholar
  17. 17.
    P. Ben Ishai, A.J. Agranat, Y. Feldman, Phys. Rev. B 70, 132104 (2004)CrossRefGoogle Scholar
  18. 18.
    X. Wang, B. Liu, Y. Yang, Y. Zhang, X. Lv, G. Hong, R. Shu, H. Yu, J. Wang, Appl. Phys. Lett. 105, 051910 (2014)CrossRefGoogle Scholar
  19. 19.
    V. Leyva, A. Agranat, A. Yariv, J. Appl. Phys. 67, 7162 (1990)CrossRefGoogle Scholar
  20. 20.
    M. Wang, Z.H. Yang, J.Y. Wang, Y.G. Liu, Q.C. Guan, J.Q. Wei, Ferroelectrics 132, 55 (1992)CrossRefGoogle Scholar
  21. 21.
    Z. Yang, Q. Guan, J. Wei, J. Wang, J. Therm. Anal. Calorim. 45, 297 (1995)CrossRefGoogle Scholar
  22. 22.
    X.P. Wang, J.Y. Wang, H.J. Zhang, Y.G. Yu, J. Wu, W.L. Cao, R.I. Boughton, J. Appl. Phys. 103, 033513 (2008)CrossRefGoogle Scholar
  23. 23.
    J. Sigman, H.J. Bae, D.P. Norton, L.A. Boatner, Appl. Phys. A 81, 289 (2005)CrossRefGoogle Scholar
  24. 24.
    E. Borsella, A. Dal Vecchio, M.A. Garcia, C. Sada, F. Gonella, R. Polloni, A. Quaranta, L.J.G.W. Wilderen, J. Appl. Phys. 91, 90 (2002)CrossRefGoogle Scholar
  25. 25.
    S. Lee, S. Hwang, M. Cha, H. Shin, H. Kim, J. Phys. Chem. Solids 69, 1498 (2006)CrossRefGoogle Scholar
  26. 26.
    J. Zhang, J. Sheng, Int. J. Hydrogen Energy 34, 3531 (2009)CrossRefGoogle Scholar
  27. 27.
    R.D. Schmidt-Whitley, M. Martinez-Clemente, A. Rercolevschi, J. Cryst. Growth 23, 113 (1974)CrossRefGoogle Scholar
  28. 28.
    T. Srikumar, I.V. Kityk, ChS Rao, Y. Gandhi, M. Piasecki, P. Bragiel, V.R. Kumar, N. Veeraiah, Ceram. Int. 37, 2763 (2011)CrossRefGoogle Scholar
  29. 29.
    P. Liu, E.J.M. Hensen, J. Am. Chem. Soc. 135, 14032 (2013)CrossRefGoogle Scholar
  30. 30.
    Y. Hu, H. Gu, Z. Hu, H. Wang, J. Colloid Interf. Sci. 310, 292 (2007)CrossRefGoogle Scholar
  31. 31.
    Z. Wu, J. Liu, Y. Gao, H. Liu, T. Li, H. Zou, Z. Wang, K. Zhang, Y. Wang, H. Zhang, B. Yang, J. Am. Chem. Soc. 137, 12906 (2015)CrossRefGoogle Scholar
  32. 32.
    K.E. Knowles, H.D. Nelson, T.B. Kilburn, D.R. Gamelin, J. Am. Chem. Soc. 137, 13138 (2015)CrossRefGoogle Scholar
  33. 33.
    F. Gonella, F. Caccavale, A. Quaranta, A. Sambo, J. Mod. Opt. 45, 837 (1998)CrossRefGoogle Scholar
  34. 34.
    M. DrDomenico Jr., S.H. Wemple, J. Appl. Phys. 40, 720 (1969)CrossRefGoogle Scholar
  35. 35.
    O. Hanske-petitpierre, Phys. Rev. B 44, 6700 (1919)CrossRefGoogle Scholar
  36. 36.
    C.G. Koops, Phys. Rev. 83, 121 (1951)CrossRefGoogle Scholar
  37. 37.
    A.K. Singh, T.C. Goel, R.G. Mendiratta, O.P. Thakur, C. Prakash, J. Appl. Phys. 91, 6626 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Xu-Ping Wang
    • 1
    • 2
  • Qing-Gang Li
    • 1
    • 3
  • Yu-Guo Yang
    • 1
    • 2
  • Yuan-Yuan Zhang
    • 1
    • 2
  • Xian-Shun Lv
    • 1
    • 2
  • Lei Wei
    • 1
    • 4
  • Bing Liu
    • 1
    • 2
  • Jian-Hua Xu
    • 1
    • 2
  • Ling Ma
    • 2
  • Ji-Yang Wang
    • 1
    • 2
  1. 1.Advanced Materials InstituteShandong Academy of SciencesJinanChina
  2. 2.Key Laboratory for Light Conversion Materials and Technology of Shandong Academy of SciencesJinanChina
  3. 3.Shandong Key Laboratory for High Strength Lightweight Metallic MaterialsJinanChina
  4. 4.State Key Laboratory of Crystal MaterialsShandong UniversityJinanChina

Personalised recommendations