Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 12, pp 12931–12939 | Cite as

Effects of film thickness and stoichiometric on the electrical, optical and photodetector properties of CdS quantum dots thin films deposited by chemically bath deposition method at different bath temperature

  • Z. Makhdoumi-Kakhaki
  • A. Youzbashi
  • P. Sangpour
  • N. Naderi
  • A. Kazemzadeh


CdS quantum size thin films were prepared by chemical bath deposition at various bath temperatures. The effect of film thickness and stoichiometry on the electrical, optical and photodetector properties was investigated. The thickness of films at bath temperature from 50 to 80 °C was 200–500 nm for multiple dip process. The optical band gap of nanofilms decreased by the increase of bath temperature, however the sub band gap of nanofilms increased by the increase of bath temperature. The photoluminescence spectra showed three emission peaks located at wavelength of 420, 460 and 490 nm which is due to violet, blue and green bands level respectively. The photodetector properties are related to deposition parameters which are discussed.


Film Thickness Dark Current Bath Temperature Chemical Bath Deposition Urbach Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support of this work was provided by Material and Energy Research Center, Tehran, Iran.


  1. 1.
    M. Husham, Z. Hassan, M. Mahdi, A.M. Selman, N.M. Ahmed, Fabrication and characterization of nanocrystalline CdS thin film-based optical sensor grown via microwave-assisted chemical bath deposition. Superlattices Microstruct. 67, 8–16 (2014)CrossRefGoogle Scholar
  2. 2.
    Y. Hashimoto, N. Kohara, T. Negami, N. Nishitani, T. Wada, Chemical bath deposition of Cds buffer layer for GIGS solar cells. Sol. Energy Mater. Sol. Cells 50, 71–77 (1998)CrossRefGoogle Scholar
  3. 3.
    J. Zhao, J.A. Bardecker, A.M. Munro, M.S. Liu, Y. Niu, I.-K. Ding, J. Luo, B. Chen, A.K.Y. Jen, D.S. Ginger, Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer. Nano Lett. 6, 463–467 (2006)CrossRefGoogle Scholar
  4. 4.
    J.S. Ma, C.Y. Yang, J.C. Sung, T. Minemoto, C.H. Lu, Effects of CBD-derived CdS film thickness on the photovoltaic properties of Cu(In, Ga)Se2 solar cells. J. Mater. Sci.: Mater. Electron. 26, 6736–6743 (2015)Google Scholar
  5. 5.
    Z. Makhdoumi Kakhaki, A. Youzbashi, P. Sangpour, N. Naderi, A. Kazemzadeh, Effect of bath temperature and concentration of buffer salt on the optoelectronic characteristics of CdS thin films synthesised by chemical bath deposition method. Micro Nano Lett. 11, 81–85 (2016)CrossRefGoogle Scholar
  6. 6.
    D.P. Amalnerkar, Photoconducting and allied properties of CdS thick films. Mater. Chem. Phys. 60(1), 1–21 (1999)CrossRefGoogle Scholar
  7. 7.
    P.K. Nair, J. Campos, M.T.S. Nair, Opto-electronic characteristics of chemically deposited cadmium sulphide thin films. Semicond. Sci. Technol. 3(2), 134 (1988)CrossRefGoogle Scholar
  8. 8.
    A. Zyoud, I. Saa’deddin, S. Khudruj, Z.M. Hawash, D. Park, G. Campet, H.S. Hilal, CdS/FTO thin film electrodes deposited by chemical bath deposition and by electrochemical deposition: a comparative assessment of photo-electrochemical characteristics. Solid State Sci. 18, 83–90 (2013)CrossRefGoogle Scholar
  9. 9.
    S. Yılmaz, The investigation of spray pyrolysis grown CdS thin films doped with flourine atoms. Appl. Surf. Sci. 577, 873–879 (2015)CrossRefGoogle Scholar
  10. 10.
    Ersin Yücel, Yasin Yücel, Mustafa Durak, Process optimization for window material CdS thin films grown by a successive ionic layer adsorption and reaction method using response surface methodology. J Alloys Compd 664, 530–537 (2016)CrossRefGoogle Scholar
  11. 11.
    M.A. Islam, F. Haque, K.S. Rahman, N. Dhar, M.S. Hossain, Y. Sulaiman, N. Amin, Effect of oxidation on structural, optical and electrical properties of CdS thin films grown by sputtering. Opt. Int J Light Electron Opt. 126, 3177–3180 (2015)CrossRefGoogle Scholar
  12. 12.
    J. Chu, Z. Jin, S. Cai, J. Yang, Z. Hong, An in situ chemical reaction deposition of nanosized wurtzite CdS thin films. Thin Solid Films 520, 1826–1831 (2012)CrossRefGoogle Scholar
  13. 13.
    J. Li, Preparation and properties of CdS thin films deposited by chemical bath deposition. Ceram. Int. 41, S376–S380 (2015)CrossRefGoogle Scholar
  14. 14.
    Z. Makhdoumi-Kakhaki, A. Youzbashi, P. Sangpour, A. Kazemzadeh, N. Naderi, A.M. Bazargan, Effects of buffer salt concentration on the dominated deposition mechanism and optical characterization of chemically deposited cadmium sulphide thin films. Surf. Rev. Lett. 23, 1650014 (2016)CrossRefGoogle Scholar
  15. 15.
    W.G.C. Kumarage, R.P. Wijesundera, V.A. Seneviratne, C.P. Jayalath, B.S. Dassanayake, Tunable optoelectronic properties of CBD-CdS thin films via bath temperature alterations. J. Phys. D Appl. Phys. 49, 095109 (2016)CrossRefGoogle Scholar
  16. 16.
    J. Chu, Z. Jin, W. Wang, H. Liu, D. Wang, J. Yang, Z. Hong, Influence of anionic concentration and deposition temperature on formation of wurtzite CdS thin films by in situ chemical reaction method. J. Alloys Compd. 517, 54–60 (2012)CrossRefGoogle Scholar
  17. 17.
    P. Prathap, N. Revathi, Y.V. Subbaiah, K.R. Reddy, Thickness effect on the microstructure, morphology and optoelectronic properties of ZnS films. J. Phys.: Condens. Matter 20(3), 035205 (2007)Google Scholar
  18. 18.
    S. Kumar, S. Kumar, P. Sharma, V. Sharma, S.C. Katyal, CdS nanofilms: effect of film thickness on morphology and optical band gap. J. Appl. Phys. 112, 123512 (2012)CrossRefGoogle Scholar
  19. 19.
    M. Husham, Z. Hassan, A.M. Selman, N.K. Allam, Microwave-assisted chemical bath deposition of nanocrystalline CdS thin films with superior photodetection characteristics. Sens. Actuators A Phys. 230, 9–16 (2015)CrossRefGoogle Scholar
  20. 20.
    M. Mahdi, J. Hassan, Z. Hassan, S. Ng, Growth and characterization of ZnxCd1−xS nanoflowers by microwave-assisted chemical bath deposition. J. Alloys Compd. 541, 227–233 (2012)CrossRefGoogle Scholar
  21. 21.
    J.P. Enríquez, X. Mathew, Influence of the thickness on structural, optical and electrical properties of chemical bath deposited CdS thin films. Sol. Energy Mater. Sol. Cells 76(3), 313–322 (2003)CrossRefGoogle Scholar
  22. 22.
    A.E. Rakhshani, A.S. Al-Azab, Characterization of CdS films prepared by chemical-bath deposition. J. Phys.: Condens. Matter 12(40), 8745 (2000)Google Scholar
  23. 23.
    H. Moualkia, S. Hariech, M.S. Aida, Structural and optical properties of CdS thin films grown by chemical bath deposition. Thin Solid Films 518(4), 1259–1262 (2009)CrossRefGoogle Scholar
  24. 24.
    H. Metin, R. Esen, Annealing effects on optical and crystallographic properties of CBD grown CdS films. Semicond. Sci. Technol. 18(7), 647 (2003)CrossRefGoogle Scholar
  25. 25.
    E. Çetinörgü, C. Gümüş, R. Esen, Effects of deposition time and temperature on the optical properties of air-annealed chemical bath deposited CdS films. Thin Solid Films 515(4), 1688–1693 (2006)CrossRefGoogle Scholar
  26. 26.
    A. Meeder, D.F. Marron, A. Rumberg, M.C. Lux-Steiner, V. Chu, J.P. Conde, Direct measurement of Urbach tail and gap state absorption in CuGaSe2 thin films by photothermal deflection spectroscopy and the constant photocurrent method. J. Appl. Phys. 92(6), 3016–3020 (2002)CrossRefGoogle Scholar
  27. 27.
    A. Hässelbarth, A. Eychmüller, H. Weller, Detection of shallow electron traps in quantum sized CdS by fluorescence quenching experiments. Chem. Phys. Lett. 203(2), 271–276 (1993)CrossRefGoogle Scholar
  28. 28.
    M. Agata, H. Kurase, S. Hayashi, K. Yamamoto, Photoluminescence spectra of gas-evaporated CdS microcrystals. Solid State Commun. 76(8), 1061–1065 (1990)CrossRefGoogle Scholar
  29. 29.
    M.A. Mahdi, Z. Hassan, S.S. Ng, J.J. Hassan, S.M. Bakhori, Structural and optical properties of nanocrystalline CdS thin films prepared using microwave-assisted chemical bath deposition. Thin Solid Films 520, 3477–3484 (2012)CrossRefGoogle Scholar
  30. 30.
    J.W. Orton, B.J. Goldsmith, J.A. Chapman, M.J. Powell, The mechanism of photoconductivity in polycrystalline cadmium sulphide layers. J. Appl. Phys. 53, 1602 (1982)CrossRefGoogle Scholar
  31. 31.
    T. Gao, Q.H. Li, T.H. Wang, CdS nanobelts as photoconductors. Appl. Phys. Lett. 86(17), 173105 (2005)CrossRefGoogle Scholar
  32. 32.
    S. Mridha, D. Basak, Thickness dependent photoconducting properties of ZnO films. Chem. Phys. Lett. 427(1), 62–66 (2006)CrossRefGoogle Scholar
  33. 33.
    P.Y. Yang, J.L. Wang, W.C. Tsai, S.J. Wang, J.C. Lin, I.C. Lee, H.C. Cheng, Photoresponse of hydrothermally grown lateral ZnO nanowires. Thin Solid Films 518(24), 7328–7332 (2010)CrossRefGoogle Scholar
  34. 34.
    X.G. Zheng, Q.S. Li, W. Hu, D. Chen, N. Zhang, M.J. Shi, L.C. Zhang, Photoconductive properties of ZnO thin films grown by pulsed laser deposition. J. Lumin. 122, 198–201 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Z. Makhdoumi-Kakhaki
    • 1
  • A. Youzbashi
    • 1
  • P. Sangpour
    • 1
  • N. Naderi
    • 1
  • A. Kazemzadeh
    • 1
  1. 1.Materials and Energy Research CenterTehranIran

Personalised recommendations