Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 11, pp 12193–12200 | Cite as

Effect of aluminum addition on the electrochemical corrosion behavior of Sn–3Ag–0.5Cu solder alloy in 3.5 wt% NaCl solution

  • M. Fayeka
  • M. A. Fazal
  • A. S. M. A. Haseeb


The ternary eutectic Sn–Ag–Cu (SAC) solder alloys has become the most promising Pb-containing solders for the application in electronic packaging. The effect of Aluminum on the electrochemical corrosion behavior of Sn–3.0Ag–0.5Cu (SAC 305) solder alloy was investigated in 3.5 wt% NaCl solution in terms of potentiodynamic polarization and electrochemical impedance spectroscopy. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and atomic force microscopy (AFM) were used to characterize the samples after the electrochemical tests. Polarization studies indicated that an addition of 0.1 and 0.5 wt% Al in the Sn–3.0Ag–0.5Cu solder alloy shifted the corrosion potential (Ecorr) towards more negative values. The Impedance results revealed that the addition of Al with Sn–3.0Ag–0.5Cu solder alloy led to a lower corrosion resistance in terms of impedance values and the capacitance. The SEM images revealed existence of openings and pores in the corrosion product of solders containing Al. EDX and XRD analysis confirmed that the oxides and hydroxides of Sn and Al were the major corrosion products. AFM images exhibited that the surface becomes more rough and non-uniform with Al addition to SAC 305 solder alloy.


Corrosion Product Passive Film Solder Alloy Potentiodynamic Polarization Passivation Current Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge the financial support of UMRG Grant (UMRG No. RP013B-13AET) from the University of Malaya, Malaysia.


  1. 1.
    M. Wang, J. Wang, H. Feng, W. Ke, J. Mater. Sci.: Mater. Electron. 23, 148–155 (2012)Google Scholar
  2. 2.
    A. Wierzbicka-Miernik, J. Guspiel, L. Zabdyr, Arch. Civ. Mech. Eng. 15, 206–213 (2015)CrossRefGoogle Scholar
  3. 3.
    N. Bai, X. Chen, Int. J. Plast. 25, 2181–2203 (2009)CrossRefGoogle Scholar
  4. 4.
    D. Li, P.P. Conway, C. Liu, Corros. Sci. 50, 995–1004 (2008)CrossRefGoogle Scholar
  5. 5.
    L. Zhang, S.-B. Xue, L.-B. Gao, G. Zeng, Z. Sheng, Y. Chen, S.-B. Yu, J. Mater. Sci. Mater. Electron. 20, 685–694 (2009)CrossRefGoogle Scholar
  6. 6.
    X. Li, J. Zhang, P. Yang, M. An, RSC Adv. 4, 5853–5859 (2014)CrossRefGoogle Scholar
  7. 7.
    W. Luo, C. Ho, J. Tsai, Y. Lin, C. Kao, Mat. Sci. Eng. A Struct. 396, 385–391 (2005)CrossRefGoogle Scholar
  8. 8.
    L. Zhang, J.-G. Han, C.-W. He, Y.-H. Guo, J. Mater. Sci. Mater. Electron. 24, 172–190 (2013)CrossRefGoogle Scholar
  9. 9.
    K. Kim, S. Huh, K. Suganuma, J. Alloys Compd. 352, 226–236 (2003)CrossRefGoogle Scholar
  10. 10.
    M. Huang, L. Wang, Metall. Mater. Trans. A 36, 1439–1446 (2005)CrossRefGoogle Scholar
  11. 11.
    E. Rosalbino, G. Angelini, R. Zanicchi, R. Carlini, Marazza. Electrochim. Acta 54, 7231–7235 (2009)CrossRefGoogle Scholar
  12. 12.
    F. Rosalbino, E. Angelini, G. Zanicchi, R. Marazza, Mater. Chem. Phys. 109, 386–391 (2008)CrossRefGoogle Scholar
  13. 13.
    U.S. Mohanty, K.-L. Lin, J. Electron. Mater. 42, 628–638 (2013)CrossRefGoogle Scholar
  14. 14.
    U.S. Mohanty, K.-L. Lin, J. Electrochem. Soc. 153, B319–B324 (2006)CrossRefGoogle Scholar
  15. 15.
    U.S. Mohanty, K.-L. Lin, Corros. Sci. 48, 662–678 (2006)CrossRefGoogle Scholar
  16. 16.
    L. Hua, C. Yang, Microelectron. Reliab. 51, 2274–2283 (2011)CrossRefGoogle Scholar
  17. 17.
    S.K. Das, A. Sharif, Y.C. Chan, N.B. Wong, W. Yung, J. Alloys Compd. 481, 167–172 (2009)CrossRefGoogle Scholar
  18. 18.
    A.K. Gain, T. Fouzder, Y.C. Chan, A. Sharif, N.B. Wong, W.K. Yung, J. Alloys Compd. 506, 216–223 (2010)CrossRefGoogle Scholar
  19. 19.
    U.S. Mohanty, K.-L. Lin, Appl. Surf. Sci. 252, 5907–5916 (2006)CrossRefGoogle Scholar
  20. 20.
    M.F.M. Nazeri, A.A. Mohamad, J. Alloys Compd. 661, 516–525 (2016)CrossRefGoogle Scholar
  21. 21.
    M. Asaduzzaman, C.M. Mohammad, I. Mayeedul, Chem. Ind. Chem. Eng. Q. 17, 477–483 (2011)CrossRefGoogle Scholar
  22. 22.
    U.S. Mohanty, K.-L. Lin, Corros. Sci. 49, 2815–2831 (2007)CrossRefGoogle Scholar
  23. 23.
    W. Badawy, F. Al-Kharafi, A. El-Azab, Corros. Sci. 41, 709–727 (1999)CrossRefGoogle Scholar
  24. 24.
    M.F.M. Nazeri, M.G. Affendy, A.A. Mohamad, Int. J. Electrochem. Sci. 7, 4182–4191 (2012)Google Scholar
  25. 25.
    U.S. Mohanty, K.-L. Lin, Mat. Sci. Eng. A Struct. 406, 34–42 (2005)CrossRefGoogle Scholar
  26. 26.
    P. Okafor, X. Liu, Y. Zheng, Corros. Sci. 51, 761–768 (2009)CrossRefGoogle Scholar
  27. 27.
    M. Huang, L. Wang, C. Wu, J. Mater. Res. 17, 2897–2903 (2002)CrossRefGoogle Scholar
  28. 28.
    C.M.A. Brett, F. Trandafir, J. Electroanal. Chem. 572, 347–354 (2004)CrossRefGoogle Scholar
  29. 29.
    L. Díaz-Ballote, J. López-Sansores, L. Maldonado-López, L. Garfias-Mesias, Electrochem. Commun. 11, 41–44 (2009)CrossRefGoogle Scholar
  30. 30.
    S. Yuan, A.M. Choong, S. Pehkonen, Corros. Sci. 49, 4352–4385 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. Fayeka
    • 1
  • M. A. Fazal
    • 1
  • A. S. M. A. Haseeb
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations