Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 11, pp 12141–12147 | Cite as

Facile synthesis of sponge-loaded Bi2WO6 photocatalyst and degradation of tetracycline hydrochloride under visible light

  • Fenglin Zhang
  • Shengyu Zhang
  • Shuang Zou
  • Shuang Zhong


A sponge-loaded Bi2WO6 catalyst was prepared through a facile physical load method by using sponge as the carrier and PVA as the immobilizing agent. The as-prepared photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (FE-SEM), energy dispersive spectrometry (EDS) and element mapping. The results indicated that the addition of PVA did not impact the crystalline structure of Bi2WO6 and the Bi2WO6 catalyst had been successfully loaded to the sponge surfaces with the presence of PVA.The preparation conditions were optimized with the orthogonal experiment and confirmed by photocatalytic activity evaluation to be: 0.04 mmol PVA, the sponge-to-catalyst mass ratio of 1:1, the solid-to-liquid ratio of 8 g/L, and load temperature 100 °C. Under the optimum conditions, the average load rate of the photocatalysts was 43.24 % and the TCH photocatalytic degradation under visible light reached 94.00 %. Moreover, the sponge-loaded Bi2WO6 composite catalyst showed a stable photocatalytic activity under visible light irradiation.


Sponge Photocatalytic Activity Energy Dispersive Spectrometry Visible Light Irradiation Adsorption Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The present work was financially supported by National Natural Science Foundation of China (Grant No. 41472214), also funded by Graduate Innovation Fund of Jilin University (No.2015027) and Jilin Provincial Science & Technology Department (Grant No. 20150204050SF).


  1. 1.
    H. Wang, X. Wu, H. Zhao, X. Quan, Chin. Sci. Bull. 57, 601 (2012). doi: 10.1007/s11434-011-4897-x CrossRefGoogle Scholar
  2. 2.
    X. Yu, Z. Lu, D. Wu et al., React. Kinet. Mech. Catal. 111, 347 (2014). doi: 10.1007/s11144-013-0631-9 CrossRefGoogle Scholar
  3. 3.
    Y. Chao, W. Zhu, B. Yan, et al. (2014) J.Appl. Polym. Sci. 131. Doi: 10.1002/app.40561
  4. 4.
    M. Zhao, Y. Fu, H. Ma et al., J. Mater. Sci.-Mater. Electron. 26, 7882 (2015). doi: 10.1007/s10854-015-3439-8 CrossRefGoogle Scholar
  5. 5.
    Z. Lu, F. Chen, M. He et al., Chem. Eng. J. 249, 15 (2014). doi: 10.1016/j.cej.2014.03.077 CrossRefGoogle Scholar
  6. 6.
    T. Wang, F. Zhang, G. Xiao, S. Zhong, C. Lu, Photochem. Photobiol. 91, 291 (2015). doi: 10.1111/php.12409 CrossRefGoogle Scholar
  7. 7.
    M. Aliabadi, J. Mater. Sci.-Mater. Electron. 26, 8892 (2015). doi: 10.1007/s10854-015-3570-6 CrossRefGoogle Scholar
  8. 8.
    B.M. Rajbongshi, S.K. Samdarshi, B. Boro, J. Mater. Sci.-Mater. Electron. 26, 377 (2015). doi: 10.1007/s10854-014-2410-4 CrossRefGoogle Scholar
  9. 9.
    S. Zhong, F-j. Zhang, W. Lu, T. Wang, L. Qu (2015) RSC Adv. Doi: 10.1039/c5ra08538a
  10. 10.
    L.J. Fei, Z.Y. Zhou, S.P. Hui, X.L. Dong, J. Mater. Sci.-Mater. Electron. 26, 6843 (2015). doi: 10.1007/s10854-015-3299-2 CrossRefGoogle Scholar
  11. 11.
    Y.-J. Liu, R. Cai, T. Fang, J.-G. Wu, A. Wei, Mater. Res. Bull. 66, 96 (2015). doi: 10.1016/j.materresbull.2015.02.032 CrossRefGoogle Scholar
  12. 12.
    S.-P. Hu, C.-Y. Xu, L. Zhen, Mater. Lett. 95, 117 (2013). doi: 10.1016/j.matlet.2012.12.058 CrossRefGoogle Scholar
  13. 13.
    S.-P. Hu, C.-Y. Xu, W.-S. Wang, F.-X. Ma, L. Zhen, Ceram. Int. 40, 11689 (2014). doi: 10.1016/j.ceramint.2014.03.179 CrossRefGoogle Scholar
  14. 14.
    D. Li, H. Zheng, Q. Wang et al., Sep. Purif. Technol. 123, 130 (2014). doi: 10.1016/j.seppur.2013.12.029 CrossRefGoogle Scholar
  15. 15.
    H.-Y. Ren, B.-F. Liu, G.-J. Xie, L. Zhao, N.-Q. Ren, Glob. Change Biol. Bioenergy 6, 599 (2014). doi: 10.1111/gcbb.12073 CrossRefGoogle Scholar
  16. 16.
    S. Singh, H. Mahalingam, P.K. Singh, Appl. Catal. A 462–463, 178 (2013). doi: 10.1016/j.apcata.2013.04.039 CrossRefGoogle Scholar
  17. 17.
    D. Zhou, Z. Xu, S. Dong et al., Environ. Sci. Technol. 49, 7776 (2015). doi: 10.1021/acs.est.5b00989 CrossRefGoogle Scholar
  18. 18.
    S. Dong, S. Dong, X. Tian et al., J. Hazard. Mater. 302, 386 (2016). doi: 10.1016/j.jhazmat.2015.10.007 CrossRefGoogle Scholar
  19. 19.
    S. Zhong, F. Zhang, B. Yu, P. Zhao, L. Jia, S. Zhang, J. Mater. Sci.: Mater. Electron. (2015). doi: 10.1007/s10854-015-4123-8 Google Scholar
  20. 20.
    M.-S. Gui, W.-D. Zhang, Q.-X. Su, C.-H. Chen, J. Solid State Chem. 184, 1977 (2011). doi: 10.1016/j.jssc.2011.05.057 CrossRefGoogle Scholar
  21. 21.
    Z. Sun, C. Bai, S. Zheng, X. Yang, R.L. Frost, Appl. Catal. A 458, 103 (2013). doi: 10.1016/j.apcata.2013.03.035 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Fenglin Zhang
    • 1
  • Shengyu Zhang
    • 2
  • Shuang Zou
    • 3
  • Shuang Zhong
    • 2
    • 3
  1. 1.College of Transportation Science and EngineeringJilin Jianzhu UniversityChangchunChina
  2. 2.Key Laboratory of Songliao Aquatic Environment, Ministry of EducationJilin Jianzhu UniversityChangchunChina
  3. 3.Key Laboratory of Groundwater Resources and Environment, Ministry of EducationJilin UniversityChangchunChina

Personalised recommendations