Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 11, pp 12091–12099 | Cite as

Tunable perfect metamaterial absorber and sensor applications

  • M. Bakır
  • M. Karaaslan
  • F. Dincer
  • K. Delihacioglu
  • C. Sabah


Operation frequencies of traditional metamaterial absorbers are fixed meaning that it is not possible to change that frequency after the fabrication. Therefore, more studies are focused on the design of Tunable metamaterial absorber (TMA) since it is important to expand operation frequency. If the impedance of one or more layers of an absorber can be changed according to the applied electrical optical signal, then it would be possible to realize tunable absorbing designs. However, TMA studies reported previously are mainly focused on absorbing mechanism at microwave frequencies. In this study, TMA with varactor diode is designed and analyzed for absorber and sensor configurations. TMA is constructed by using a simple rectangular-shape geometry having two splits and a varactor diode placed at the right split. Numerical and experimental results show that perfect absorption is achieved when 0–10 V reverse bias voltage is applied. Resonance frequency can be easily tuned by changing the reverse bias voltage. Frequency dependent absorption behavior of TMA is presented with respect to different incident angles for TE and TM polarizations. A sensor application, knowing the absorption resonance frequency can provide the ability to determine the temperature of materials. The novelty of the study is to determine the temperature or the other parameters such as humidity or pressure by using TMA. It is also possible to determine the material type or its density if limited resource such as frequency generator is present.


Resonance Frequency Transverse Magnetic Transverse Electric Sensor Application Vector Network Analyzer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C.P. Scarborough, Z.H. Jiang, D.H. Werner, C. Rivero-Baleine, C. Drake, Experimental demonstration of an isotropic metamaterial super lens with negative unity permeability at 8.5 MHz. Appl. Phys. Lett. 101, 014101–014104 (2012)CrossRefGoogle Scholar
  2. 2.
    S. Maci, A cloaking metamaterial based on an inhomogeneous linear field transformation. IEEE Trans. Antennas Propag. 58, 1136–1143 (2010)CrossRefGoogle Scholar
  3. 3.
    C. Sabah, M.D. Thomson, F. Meng, S. Tzanova, H.G. Roskos, Terahertz propagation properties of free-standing woven-steel-mesh metamaterials: pass-bands and signatures of abnormal group velocities. J. Appl. Phys. 110, 064902 (2010)CrossRefGoogle Scholar
  4. 4.
    C. Sabah, F. Dincer, M. Karaaslan, E. Unal, O. Akgol, E. Demirel, Perfect metamaterial absorber with polarization and incident angle independencies based on ring and cross-wire resonators for shielding and a sensor application. Opt. Commun. 322, 137–142 (2014)CrossRefGoogle Scholar
  5. 5.
    F. Bilotti, L. Nucci, L. Vegni, An SRR-based microwave absorber. Microw. Opt. Technol. Lett. 48, 2171–2175 (2006)CrossRefGoogle Scholar
  6. 6.
    N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008)CrossRefGoogle Scholar
  7. 7.
    Q. Cheng, T.J. Cui, W.X. Jiang, B.G. Cai, An omnidirectional electromagnetic absorber made of metamaterials. New J. Phys. 12, 063006–063015 (2012)CrossRefGoogle Scholar
  8. 8.
    H.T. Chen, Interference theory of metamaterial perfect absorbers. Opt. Express 20, 7165–7172 (2012)CrossRefGoogle Scholar
  9. 9.
    J. Lee, S. Lim, Bandwidth-enhanced and polarization-insensitive metamaterial absorber using double resonance. Electron. Lett. 47, 8–9 (2012)CrossRefGoogle Scholar
  10. 10.
    J. Sun, L. Liu, G. Dong, J. Zhou, An extremely broad band metamaterial absorber based on destructive interference. Opt. Express 19, 21155–21162 (2011)CrossRefGoogle Scholar
  11. 11.
    L. Li, Y. Yang, C.H. Liang, A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes. J. Appl. Phys. 110, 063702–063706 (2011)CrossRefGoogle Scholar
  12. 12.
    J.W. Park, P.V. Tuong, J.Y. Rhee, K.W. Kim, W.H. Jang, E.H. Choi, L.Y. Chen, Y. Lee, Multi-band metamaterial absorber based on the arrangement of donut-type resonators. Opt. Express 21, 9691–9702 (2013)CrossRefGoogle Scholar
  13. 13.
    B. Wang, T. Koschny, C.M. Soukoulis, Wide-angle and polarization-independent chiral metamaterial absorber. Phys. Rev. B 80, 033108 (2009)CrossRefGoogle Scholar
  14. 14.
    B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, T. Jiang, Polarization insensitive metamaterial absorber with wide incident angle. Prog. Electromagn. Res. 101, 231–239 (2010)CrossRefGoogle Scholar
  15. 15.
    J. Lee, S. Lim, Bandwidth-enhanced and polarization- insensitive metamaterial absorber using double resonance. Electron. Lett. 47, 8–9 (2011)CrossRefGoogle Scholar
  16. 16.
    O.T. Gunduz, C. Sabah, Polarization angle independent perfect multiband metamaterial absorber and energy harvesting application. J. Comp. Electronics (2015). doi: 10.1007/s10825-015-0735-8
  17. 17.
    D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006)CrossRefGoogle Scholar
  18. 18.
    F. Dincer, O. Akgol, M. Karaaslan, E. Unal, C. Sabah, Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime. Prog. Electromagn. Res. 144, 93–101 (2014)CrossRefGoogle Scholar
  19. 19.
    B. Zhu, Y. Feng, J. Zhao, C. Huang, Z. Wang, T. Jiang, Polarization modulation by tunable electromagnetic metamaterial reflector/absorber. Opt. Express 18, 23196–23203 (2010)CrossRefGoogle Scholar
  20. 20.
    I.B. Shadrivov, A.B. Kozyrev, D.W. Weide, Y.S. Kivshar, Tunable transmission and harmonic generation in nonlinear metamaterials. Appl. Phys. Lett. 93, 161903 (2008)CrossRefGoogle Scholar
  21. 21.
    B. Zhu, Y.J. Feng, J.M. Zhao, C. Huang, T.A. Jiang, Switchable metamaterial reflector/absorber for different polarized electromagnetic waves. Appl. Phys. Lett. 97, 051906 (2010)CrossRefGoogle Scholar
  22. 22.
    Y.J. Yang, J.W. Yong, J.Z. Guang, J.P. Zhong, H.P. Sun, Tunable broadband metamaterial absorber consisting of ferrite slabs and a copper wire. Chin. Phys. B 21, 038501–0358506 (2011)CrossRefGoogle Scholar
  23. 23.
    D. Shrekenhamer, W.C. Chen, W.J. Padilla, Liquid crystal tunable metamaterial absorber (Phys. Rev., Lett, 2013). 77403 Google Scholar
  24. 24.
    B.X. Wang, L.L. Wang, G.Z. Wang, W.Q. Huang, X.F. Li, X. Zhai, Frequency continuous tunable terahertz metamaterial absorber. J. Lightw. Technol. 32, 1183–1189 (2014)CrossRefGoogle Scholar
  25. 25.
    Q.Y. Wen, H.W. Zhang, Q.H. Yang, Z. Chen, Y. Long, Y.L. Jing, Y. Lin, P.X. Zhang, A tunable hybrid metamaterial absorber based on vanadium oxide films. J. Phys. D Appl. Phys. 45, 235106 (2012)CrossRefGoogle Scholar
  26. 26.
    J. Zhao, Q. Cheng, J. Chen, M.Q. Qi, W.X. Jiang, T.J. Cui, A tunable metamaterial absorber using varactor diodes. New J. Phys. 15, 1–11 (2013)Google Scholar
  27. 27.
    M.L. Yola, N. Atar, Novel voltammetric sensor based on gold nanoparticles involved in p-aminothiophenol functionalized multi-walled carbon nanotubes: application to the simultaneous determination of quercetin and rutin. Electrochim. Acta 119, 24–31 (2014)CrossRefGoogle Scholar
  28. 28.
    M.L. Yola, T. Eren, N. Atar, A novel and sensitive electrochemical DNA biosensor based on Fe@Au nanoparticles decorated graphene oxide. Electrochim. Acta 125, 38–47 (2014)CrossRefGoogle Scholar
  29. 29.
    M.L. Yola, T. Eren, N. Atar, Molecularly imprinted electrochemical biosensor based on Fe@Au nanoparticles involved in 2-aminoethanethiol functionalized multi-walled carbon nanotubes for sensitive determination of cefexime in human plasma. Biosens. Bioelectron. 60, 277–285 (2014)CrossRefGoogle Scholar
  30. 30.
    M.L. Yola, V.K. Gupta, T. Eren, A.E. Şen, N. Atar, A novel electroanalytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochim. Acta 120, 204–211 (2014)CrossRefGoogle Scholar
  31. 31.
    M.L. Yola, N. Atar, Z. Üstündağ, A.O. Solak, A novel voltammetric sensor based on p-aminothiophenol functionalized graphene oxide/gold nanoparticles for determining quercetin in the presence of ascorbic acid. J. Electroanal. Chem. 698, 9–16 (2013)CrossRefGoogle Scholar
  32. 32.
    M.L. Yola, T. Eren, N. Atar, A sensitive molecular imprinted electrochemical sensor based on gold nanoparticles decorated graphene oxide: Application to selective determination of tyrosine in milk. Sens. Actuators B Chem. 210, 149–157 (2015)CrossRefGoogle Scholar
  33. 33.
    N. Atar, T. Eren, M.L. Yola, H.K. Maleh, B. Demirdögen, Magnetic iron oxide and iron oxide@gold nanoparticles anchored nitrogen and sulfur-functionalized reduced graphene oxide electrocatalyst for methanol oxidation. RSC Adv. 5, 26402–26409 (2015)CrossRefGoogle Scholar
  34. 34.
    M.L. Yola, T. Eren, N. Atar, H. Saral, İ. Ermiş, Direct-methanol fuel cell based on functionalized graphene oxide with mono-metallic and bi-metallic nanoparticles: electrochemical performances of nanomaterials for methanol oxidation. Electroanalysis 28–3, 570–579 (2016)CrossRefGoogle Scholar
  35. 35.
    E. Elçin, M.L. Yola, T. Eren, B. Girgin, N. Atar, Highly selective and sensitive voltammetric sensor based on ruthenium nanoparticle anchored calix[4]amidocrown-5 functionalized reduced graphene oxide: simultaneous determination of quercetin, morin and rutin in grape wine. Electroanalysis 28–3, 611–619 (2016)CrossRefGoogle Scholar
  36. 36.
    M.L. Yola, V.K. Gupta, N. Atar, New molecular imprinted voltammetric sensor for determination of ochratoxin A. Mater. Sci. Eng. C 61, 368–375 (2015)CrossRefGoogle Scholar
  37. 37.
    G. Kotan, F. Kardaş, Ö.A. Yokuş, O. Akyıldırım, H. Saral, T. Eren, M.L. Yola, N. Atar, A novel determination of curcumin via Ru@Au nanoparticle decorated nitrogen and sulfur-functionalized reduced graphene oxide nanomaterials. Anal. Methods 8, 401–408 (2016)CrossRefGoogle Scholar
  38. 38.
    N. Atar, M.L. Yola, T. Eren, Sensitive determination of citrinin based on molecular imprinted electrochemical sensor. Appl. Surf. Sci. 362, 315–322 (2016)CrossRefGoogle Scholar
  39. 39.
    B. Ertan, T. Eren, İ. Ermiş, H. Saral, N. Atar, M.L. Yola, Sensitive analysis of simazine based on platinum nanoparticles on polyoxometalate/multi-walled carbon nanotubes. J. Colloid Interface Sci. 470, 14–21 (2016)CrossRefGoogle Scholar
  40. 40.
    Ö.A. Yokuş, F. Kardaş, O. Akyildirim, M.L. Yola, Sensitive voltammetric sensor based on polyoxometalate/reduced graphene oxide nanomaterial: application to the simultaneous determination of l-tyrosine and l-tryptophan. Sens. Actuators B Chem. 233, 47–54 (2016)CrossRefGoogle Scholar
  41. 41.
    T. Wanghuang, W. Chen, Y. Huang, G. Wen, Analysis of metamaterial absorber in normal and oblique incidence by using interference theory. AIP Adv. 3, 102118 (2013)CrossRefGoogle Scholar
  42. 42.
    B. Badaruzzaman, Application of microwave sensors to potato products (The University of Manchester, Manchester, 2010)Google Scholar
  43. 43.
    G. Barbillon, Plasmonic nanostructures prepared by soft UV nanoimprint lithography and their application in biological sensing. Micromachines 3, 321–327 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. Bakır
    • 1
  • M. Karaaslan
    • 2
  • F. Dincer
    • 3
  • K. Delihacioglu
    • 3
  • C. Sabah
    • 4
  1. 1.Department of Informatics, Institute of Natural and Applied SciencesMustafa Kemal UniversityAntakyaTurkey
  2. 2.Electrical and Electronics Engineeringİskenderun Technical UniversityİskenderunTurkey
  3. 3.Department of Electrical and Electronics Engineering7 Aralik UniversityKilisTurkey
  4. 4.Department of Electrical and Electronics EngineeringMiddle East Technical University - Northern Cyprus CampusTRNC/Mersin 10Turkey

Personalised recommendations