Skip to main content
Log in

Indium-free transparent TiOx/Ag/WO3 stacked composite electrode with improved moisture resistance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Amorphous TiOx, WO3 and Ag mid-layer films were deposited on polyethersulfone (PES) and soda-lime glass via electron beam evaporation at room temperature. The crystallinity, microstructure and surface morphology of asymmetric TiOx/Ag/WO3 multilayers (TAW) and symmetric WO3/Ag/WO3 (WAW) multilayers were investigated. The polygrains oriented along the (111) planes in the inserted Ag thin films were adopted to supply carriers into both of the dielectric layers and reduce the sheet resistance of the multilayer. The TAW multilayer with a sufficiently large Ag thickness (>15 nm) exhibited low resistance, and highly visible transmittance, low infra-red transmittance, to serve as a transparent conductive electrode and a good heat mirror. The dependence of the Ag and TiOx thickness on the optical and electrical properties of TAW multilayers was also explored. A figure of merit (FOM) was used to find an optimal layer structure for a TAW multilayer with superior conductivity and highly visible transparency. A high FOM of 1.2 × 10−1 (Ω−1) was achieved at the visible wavelength of 550 nm for a asymmetric TAW stacked layer on PES with a 15-nm-thick Ag layer, a 40-nm-thick TiOx and a 40 nm-thick WO3 layer. The moisture resistances of the TAW stacking layer showed more robustness than that of the WAW sample after damp heat exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Meyer, S. Hamwi, M. Kroger, W. Kowalsky, T. Riedl, A. Kahn, Adv. Mater. 24, 5408 (2012)

    Article  Google Scholar 

  2. J.H. Chang, W.H. Lin, P.C. Wang, J.I. Taur, T.A. Ku, W.T. Chen, S.J. Yan, W.I. Wu, Sci. Rep. 5, 9693 (2015)

    Article  Google Scholar 

  3. H. Youn, H.J. Park, L.J. Guo, Small 11, 2228 (2015)

    Article  Google Scholar 

  4. L.A. Wang, J.S. Swensen, E. Polikarpov, D.W. Matson, C.C. Bonham, W. Bennett, D.J. Gaspar, A.B. Padmaperuma, Org. Electron. 11, 1555 (2010)

    Article  Google Scholar 

  5. M.V. Castro, C.J. Tavares, Thin Solid Films 586, 13 (2015)

    Article  Google Scholar 

  6. P. Banerjee, W.J. Lee, K.R. Bae, S.B. Lee, G.W. Rubloff, J. Appl. Phys. 108, 043504 (2010)

    Article  Google Scholar 

  7. M.S. Wang, L.X. Jiang, Y.L. Wang, E.J. Kim, S.H. Hahn, J. Am. Ceram. Soc. 98, 3022 (2015)

    Article  Google Scholar 

  8. G.M. Wan, S.W. Wang, X.W. Zhang, M.L. Huang, Y.W. Zhang, W.B. Duan, L.X. Yi, Appl. Surf. Sci. 357, 622 (2015)

    Article  Google Scholar 

  9. Q.Y. Bao, J.P. Yang, J.X. Tang, Y.Q. Li, C.S. Lee, S.T. Lee, Org. Electron. 11, 1578 (2010)

    Article  Google Scholar 

  10. T. Bak, W.X. Li, J. Nowotny, A.J. Atanacio, J. Davis, J. Phys. Chem. A 119, 9465 (2015)

    Article  Google Scholar 

  11. C. Guillen, J. Herrero, Thin Solid Films 520, 1 (2011)

    Article  Google Scholar 

  12. L. Cattin, J.C. Bernede, M. Morsli, Phys. Status Solidi A Appl. Mater. 210, 1047 (2013)

    Article  Google Scholar 

  13. H. Yang, S. Shin, J. Park, G. Ham, J. Oh, H. Jeon, Curr. Appl. Phys. 14, 1331 (2014)

    Article  Google Scholar 

  14. Y.C. Fang, J.J. He, K. Zhang, C.Y. Xiao, B. Zhang, J. Shen, H.H. Niu, R. Yan, J.L. Chen, Opt. Lett. 40, 5455 (2015)

    Article  Google Scholar 

  15. A. Dhar, T.L. Alford, ECS Solid State Lett. 3, N33 (2014)

    Article  Google Scholar 

  16. C.H. Cheng, J.M. Ting, Thin Solid Films 516, 203 (2007)

    Article  Google Scholar 

  17. M.M.D. Kumar, S.M. Baek, J. Kim, Mater. Lett. 137, 132 (2014)

    Article  Google Scholar 

  18. J.H. Kim, D.S. Kim, S.K. Kim, Y.Z. Yoo, J.H. Lee, S.W. Kim, T.Y. Seong, Ceram. Int. 42, 3473 (2016)

    Article  Google Scholar 

  19. H.K. Park, J.W. Kang, S.I. Na, D.Y. Kim, H.K. Kim, Sol. Energy Mater. Sol. Cells 93, 1994 (2009)

    Article  Google Scholar 

  20. A. Indluru, T.L. Alford, J. Appl. Phys. 105, 123528 (2009)

    Article  Google Scholar 

  21. H.L. Li, Y. Lv, X. Zhang, X.Y. Wang, X.Y. Liu, Sol. Energy Mater. Sol. Cells 136, 86 (2015)

    Article  Google Scholar 

  22. N. Zhang, Y.S. Hu, X.Y. Liu, Appl. Phys. Lett. 103, 033301 (2013)

    Article  Google Scholar 

  23. C.C. Wu, P.S. Chen, C.H. Peng, C.C. Wang, J. Mater. Sci.: Mater. Electron. 24, 2461 (2013)

    Google Scholar 

  24. K. Jeon, H. Youn, S. Kim, S. Shin, M. Yang, Nanoscale Res. Lett. 7, 253 (2012)

    Article  Google Scholar 

  25. M.M. Hasan, A.S.M.A. Haseeb, H.H. Majuki, Surf. Eng. 27, 382 (2011)

    Article  Google Scholar 

  26. C. T. Lee, D. Y. Chiang, P. K. Chiu, N. N. Chu, in Proceedings of 2014 International Symposium on Next-Generation Electronics. doi:10.1109/ISNE.2014.6839355

  27. B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, Ch. 3 (Prentice-Hall, Englewood Cliffs, 2001)

    Google Scholar 

  28. D.R. Lide, CRC Handbook of Chemistry and Physics, 76th edn. (CRC, Boca Raton, 1995)

    Google Scholar 

  29. S.H. Mohamed, J. Phys. Chem. Solids 69, 2378 (2008)

    Article  Google Scholar 

  30. J.T. Guske, J. Brown, A. Welsh, S. Franzen, Opt. Express 20, 23215 (2012)

    Article  Google Scholar 

  31. X. Fang, C.L. Mak, J.Y. Dai, K. Li, H. Ye, C.W. Leung, A.C.S. Appl, Mater. Interfaces 6, 15743 (2014)

    Article  Google Scholar 

  32. J.A. Jeong, H.K. Kim, Sol. Energy Mater. Sol. Cells 93, 1801 (2009)

    Article  Google Scholar 

  33. G. Haacke, J. Appl. Phys. 47, 4086 (1976)

    Article  Google Scholar 

  34. J.H. Kim, H.K. Lee, J.Y. Na, S.K. Kim, Y.Z. Yoo, T.Y. Seong, Ceram. Int. 41, 8059 (2015)

    Article  Google Scholar 

  35. W.J. Yu, L. Shen, F.X. Meng, Y.B. Long, S.P. Ruan, W.Y. Chen, Sol. Energy Mater. Sol. Cells 100, 226 (2012)

    Article  Google Scholar 

  36. K. Hong, K. Kim, S. Kim, I. Lee, H. Cho, S. Yoo, H.W. Choi, N.Y. Lee, Y.H. Tak, J.L. Lee, J. Phys. Chem. C 115, 3453 (2011)

    Article  Google Scholar 

  37. H. Kermani, H.R. Fallah, H. Hajimahmoodzadeh, Phys. E 47, 303 (2013)

    Article  Google Scholar 

  38. Y.C. Han, M.S. Lin, J.H. Park, K.C. Choi, Org. Electron. 14, 3437 (2013)

    Article  Google Scholar 

  39. N. Formica, P. Mantilla-Perez, D.S. Ghosh, D. Janner, T.L. Chen, M. Huang, S. Garner, J. Martorell, V. Pruneri, ACS Appl. Mater. Interfaces 7, 4541 (2015)

    Article  Google Scholar 

  40. M.G. Varnamkhasti, H.R. Fallah, M. Mostajaboddavati, A. Hassanzadeh, Vacuum 86, 1318 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

One of authors (P. S. Chen) acknowledges that this work is supported by the Minister of Science and Technology through Grant No. MOST 104-2221-E-159-008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pang Shiu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, CH., Chen, P.S., Lo, J.W. et al. Indium-free transparent TiOx/Ag/WO3 stacked composite electrode with improved moisture resistance. J Mater Sci: Mater Electron 27, 12060–12066 (2016). https://doi.org/10.1007/s10854-016-5354-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5354-z

Keywords

Navigation