Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 11, pp 12060–12066 | Cite as

Indium-free transparent TiOx/Ag/WO3 stacked composite electrode with improved moisture resistance

  • Cheng-Hsiung Peng
  • Pang Shiu Chen
  • Jei Wen Lo
  • Tzu Wei Lin
  • S. W. Lee
Article

Abstract

Amorphous TiOx, WO3 and Ag mid-layer films were deposited on polyethersulfone (PES) and soda-lime glass via electron beam evaporation at room temperature. The crystallinity, microstructure and surface morphology of asymmetric TiOx/Ag/WO3 multilayers (TAW) and symmetric WO3/Ag/WO3 (WAW) multilayers were investigated. The polygrains oriented along the (111) planes in the inserted Ag thin films were adopted to supply carriers into both of the dielectric layers and reduce the sheet resistance of the multilayer. The TAW multilayer with a sufficiently large Ag thickness (>15 nm) exhibited low resistance, and highly visible transmittance, low infra-red transmittance, to serve as a transparent conductive electrode and a good heat mirror. The dependence of the Ag and TiOx thickness on the optical and electrical properties of TAW multilayers was also explored. A figure of merit (FOM) was used to find an optimal layer structure for a TAW multilayer with superior conductivity and highly visible transparency. A high FOM of 1.2 × 10−1 (Ω−1) was achieved at the visible wavelength of 550 nm for a asymmetric TAW stacked layer on PES with a 15-nm-thick Ag layer, a 40-nm-thick TiOx and a 40 nm-thick WO3 layer. The moisture resistances of the TAW stacking layer showed more robustness than that of the WAW sample after damp heat exposure.

Keywords

Ag2O Transparent Conductive Oxide TiOx Organic Light Emit Diode Visible Transmittance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

One of authors (P. S. Chen) acknowledges that this work is supported by the Minister of Science and Technology through Grant No. MOST 104-2221-E-159-008.

References

  1. 1.
    J. Meyer, S. Hamwi, M. Kroger, W. Kowalsky, T. Riedl, A. Kahn, Adv. Mater. 24, 5408 (2012)CrossRefGoogle Scholar
  2. 2.
    J.H. Chang, W.H. Lin, P.C. Wang, J.I. Taur, T.A. Ku, W.T. Chen, S.J. Yan, W.I. Wu, Sci. Rep. 5, 9693 (2015)CrossRefGoogle Scholar
  3. 3.
    H. Youn, H.J. Park, L.J. Guo, Small 11, 2228 (2015)CrossRefGoogle Scholar
  4. 4.
    L.A. Wang, J.S. Swensen, E. Polikarpov, D.W. Matson, C.C. Bonham, W. Bennett, D.J. Gaspar, A.B. Padmaperuma, Org. Electron. 11, 1555 (2010)CrossRefGoogle Scholar
  5. 5.
    M.V. Castro, C.J. Tavares, Thin Solid Films 586, 13 (2015)CrossRefGoogle Scholar
  6. 6.
    P. Banerjee, W.J. Lee, K.R. Bae, S.B. Lee, G.W. Rubloff, J. Appl. Phys. 108, 043504 (2010)CrossRefGoogle Scholar
  7. 7.
    M.S. Wang, L.X. Jiang, Y.L. Wang, E.J. Kim, S.H. Hahn, J. Am. Ceram. Soc. 98, 3022 (2015)CrossRefGoogle Scholar
  8. 8.
    G.M. Wan, S.W. Wang, X.W. Zhang, M.L. Huang, Y.W. Zhang, W.B. Duan, L.X. Yi, Appl. Surf. Sci. 357, 622 (2015)CrossRefGoogle Scholar
  9. 9.
    Q.Y. Bao, J.P. Yang, J.X. Tang, Y.Q. Li, C.S. Lee, S.T. Lee, Org. Electron. 11, 1578 (2010)CrossRefGoogle Scholar
  10. 10.
    T. Bak, W.X. Li, J. Nowotny, A.J. Atanacio, J. Davis, J. Phys. Chem. A 119, 9465 (2015)CrossRefGoogle Scholar
  11. 11.
    C. Guillen, J. Herrero, Thin Solid Films 520, 1 (2011)CrossRefGoogle Scholar
  12. 12.
    L. Cattin, J.C. Bernede, M. Morsli, Phys. Status Solidi A Appl. Mater. 210, 1047 (2013)CrossRefGoogle Scholar
  13. 13.
    H. Yang, S. Shin, J. Park, G. Ham, J. Oh, H. Jeon, Curr. Appl. Phys. 14, 1331 (2014)CrossRefGoogle Scholar
  14. 14.
    Y.C. Fang, J.J. He, K. Zhang, C.Y. Xiao, B. Zhang, J. Shen, H.H. Niu, R. Yan, J.L. Chen, Opt. Lett. 40, 5455 (2015)CrossRefGoogle Scholar
  15. 15.
    A. Dhar, T.L. Alford, ECS Solid State Lett. 3, N33 (2014)CrossRefGoogle Scholar
  16. 16.
    C.H. Cheng, J.M. Ting, Thin Solid Films 516, 203 (2007)CrossRefGoogle Scholar
  17. 17.
    M.M.D. Kumar, S.M. Baek, J. Kim, Mater. Lett. 137, 132 (2014)CrossRefGoogle Scholar
  18. 18.
    J.H. Kim, D.S. Kim, S.K. Kim, Y.Z. Yoo, J.H. Lee, S.W. Kim, T.Y. Seong, Ceram. Int. 42, 3473 (2016)CrossRefGoogle Scholar
  19. 19.
    H.K. Park, J.W. Kang, S.I. Na, D.Y. Kim, H.K. Kim, Sol. Energy Mater. Sol. Cells 93, 1994 (2009)CrossRefGoogle Scholar
  20. 20.
    A. Indluru, T.L. Alford, J. Appl. Phys. 105, 123528 (2009)CrossRefGoogle Scholar
  21. 21.
    H.L. Li, Y. Lv, X. Zhang, X.Y. Wang, X.Y. Liu, Sol. Energy Mater. Sol. Cells 136, 86 (2015)CrossRefGoogle Scholar
  22. 22.
    N. Zhang, Y.S. Hu, X.Y. Liu, Appl. Phys. Lett. 103, 033301 (2013)CrossRefGoogle Scholar
  23. 23.
    C.C. Wu, P.S. Chen, C.H. Peng, C.C. Wang, J. Mater. Sci.: Mater. Electron. 24, 2461 (2013)Google Scholar
  24. 24.
    K. Jeon, H. Youn, S. Kim, S. Shin, M. Yang, Nanoscale Res. Lett. 7, 253 (2012)CrossRefGoogle Scholar
  25. 25.
    M.M. Hasan, A.S.M.A. Haseeb, H.H. Majuki, Surf. Eng. 27, 382 (2011)CrossRefGoogle Scholar
  26. 26.
    C. T. Lee, D. Y. Chiang, P. K. Chiu, N. N. Chu, in Proceedings of 2014 International Symposium on Next-Generation Electronics. doi: 10.1109/ISNE.2014.6839355
  27. 27.
    B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, Ch. 3 (Prentice-Hall, Englewood Cliffs, 2001)Google Scholar
  28. 28.
    D.R. Lide, CRC Handbook of Chemistry and Physics, 76th edn. (CRC, Boca Raton, 1995)Google Scholar
  29. 29.
    S.H. Mohamed, J. Phys. Chem. Solids 69, 2378 (2008)CrossRefGoogle Scholar
  30. 30.
    J.T. Guske, J. Brown, A. Welsh, S. Franzen, Opt. Express 20, 23215 (2012)CrossRefGoogle Scholar
  31. 31.
    X. Fang, C.L. Mak, J.Y. Dai, K. Li, H. Ye, C.W. Leung, A.C.S. Appl, Mater. Interfaces 6, 15743 (2014)CrossRefGoogle Scholar
  32. 32.
    J.A. Jeong, H.K. Kim, Sol. Energy Mater. Sol. Cells 93, 1801 (2009)CrossRefGoogle Scholar
  33. 33.
    G. Haacke, J. Appl. Phys. 47, 4086 (1976)CrossRefGoogle Scholar
  34. 34.
    J.H. Kim, H.K. Lee, J.Y. Na, S.K. Kim, Y.Z. Yoo, T.Y. Seong, Ceram. Int. 41, 8059 (2015)CrossRefGoogle Scholar
  35. 35.
    W.J. Yu, L. Shen, F.X. Meng, Y.B. Long, S.P. Ruan, W.Y. Chen, Sol. Energy Mater. Sol. Cells 100, 226 (2012)CrossRefGoogle Scholar
  36. 36.
    K. Hong, K. Kim, S. Kim, I. Lee, H. Cho, S. Yoo, H.W. Choi, N.Y. Lee, Y.H. Tak, J.L. Lee, J. Phys. Chem. C 115, 3453 (2011)CrossRefGoogle Scholar
  37. 37.
    H. Kermani, H.R. Fallah, H. Hajimahmoodzadeh, Phys. E 47, 303 (2013)CrossRefGoogle Scholar
  38. 38.
    Y.C. Han, M.S. Lin, J.H. Park, K.C. Choi, Org. Electron. 14, 3437 (2013)CrossRefGoogle Scholar
  39. 39.
    N. Formica, P. Mantilla-Perez, D.S. Ghosh, D. Janner, T.L. Chen, M. Huang, S. Garner, J. Martorell, V. Pruneri, ACS Appl. Mater. Interfaces 7, 4541 (2015)CrossRefGoogle Scholar
  40. 40.
    M.G. Varnamkhasti, H.R. Fallah, M. Mostajaboddavati, A. Hassanzadeh, Vacuum 86, 1318 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Cheng-Hsiung Peng
    • 1
  • Pang Shiu Chen
    • 1
  • Jei Wen Lo
    • 1
  • Tzu Wei Lin
    • 2
    • 3
  • S. W. Lee
    • 2
  1. 1.Department of Chemical and Materials EngineeringMingHsin University of Science and TechnologyHsinfeng, HsinchuTaiwan
  2. 2.Institute of Materials Science and EngineeringNational Central UniversityChung-Li, Tau YuanTaiwan
  3. 3.Chemical Defense Section, Chemical Systems Research DivisionChung-Shan Institute of Science TechnologyLong-Tan, Tau YuanTaiwan

Personalised recommendations