Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 11, pp 12028–12035 | Cite as

Effects of ambient air processing on morphology and photoconductivity of CH3NH3PbI3

  • Muhammad Imran Ahmed
  • Hammad Tanveer Butt
  • Zakir Hussain
  • Iftikhar Ahmed Shahid
  • Amir Habib


Ambient air synthesis offers the possibility to reduce the cost of production for perovskite solar cells. We have investigated the morphological and charge transport properties of CH3NH3PbI3 under dark and one sun illumination. Synthesis of CH3NH3PbI3 was carried out using different concentrations of CH3NH3I employing two step ambient air synthesis process in order to find an optimum concentration for such synthesis. Effect of different operating temperatures on photoconductive properties of perovskite films has also been investigated by varying the temperature from 300 to 340 K. Our investigations conclude that compactness of perovskite film plays more crucial role in determining charge transport properties, especially under illumination and at varying temperature. The process parameter i.e. low concentration of CH3NH3I, which leads to large crystal size, also creates more voids/pin holes under ambient air synthesis. Present investigation shows that an optimum concentration of 0.050 M of CH3NH3I achieves best grain size to voids ratio and optimum photoconductive properties.


PbI2 Perovskite Solar Cell Hole Transport Layer Coated Glass Slide Charge Transport Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was funded by Higher Education Commission Pakistan through Grant Number 213-58732-2EG2-014(50023541).


  1. 1.
    M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8(7), 506–514 (2014)CrossRefGoogle Scholar
  2. 2.
    M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012)CrossRefGoogle Scholar
  3. 3.
    W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240), 1234–1237 (2015)CrossRefGoogle Scholar
  4. 4.
    G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, T.C. Sum, Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 342(6156), 344–347 (2013)CrossRefGoogle Scholar
  5. 5.
    S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013)CrossRefGoogle Scholar
  6. 6.
    H.-S. Kim, I. Mora-Sero, V. Gonzalez-Pedro, F. Fabregat-Santiago, E.J. Juarez-Perez, N.-G. Park, J. Bisquert, Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nat. Commun. 4, 2242 (2013)Google Scholar
  7. 7.
    S. De Wolf, J. Holovsky, S.-J. Moon, P. Löper, B. Niesen, M. Ledinsky, F.-J. Haug, J.-H. Yum, C. Ballif, Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5(6), 1035–1039 (2014)CrossRefGoogle Scholar
  8. 8.
    X. Ziang, L. Shifeng, Q. Laixiang, P. Shuping, W. Wei, Y. Yu, Y. Li, C. Zhijian, W. Shufeng, D. Honglin, Y. Minghui, G.G. Qin, Refractive index and extinction coefficient of CH_3NH_3PbI_3 studied by spectroscopic ellipsometry. Opt. Mater. Express 5(1), 29 (2014)CrossRefGoogle Scholar
  9. 9.
    S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, C. Huang, CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6 %. Nano Lett. 15(6), 3723–3728 (2015)CrossRefGoogle Scholar
  10. 10.
    H.-S. Ko, J.-W. Lee, N.-G. Park, 15.76 % efficiency perovskite solar cell prepared under high relative humidity: importance of PbI2 morphology in two-step deposition of CH3NH3PbI3. J. Mater. Chem. A 3(16), 8808–8815 (2015)CrossRefGoogle Scholar
  11. 11.
    R. Sheng, A. Ho-Baillie, S. Huang, S. Chen, X. Wen, X. Hao, M.A. Green, Methylammonium lead bromide perovskite-based solar cells by vapour-assisted deposition. J. Phys. Chem. C 119(7), 150127132618007 (2015)CrossRefGoogle Scholar
  12. 12.
    J. Borchert, H. Boht, W. Fränzel, R. Csuk, R. Scheer, P. Pistor, Structural investigation of co-evaporated methyl ammonium lead halide perovskite films during growth and thermal decomposition using different PbX 2 (X = I, Cl) precursors. J. Mater. Chem. A 3(39), 19842–19849 (2015)CrossRefGoogle Scholar
  13. 13.
    A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Gratzel, H. Han, A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science (80-.) 345(6194), 295–298 (2014)CrossRefGoogle Scholar
  14. 14.
    J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, N.-G. Park, Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol. 9(11), 927–932 (2014)CrossRefGoogle Scholar
  15. 15.
    J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013)CrossRefGoogle Scholar
  16. 16.
    H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan, Z. Hong, J. Hou, Y. Liu, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, Y. Yang, Moisture assisted perovskite film growth for high performance solar cells. Appl. Phys. Lett. 345(18), 542–546 (2014)Google Scholar
  17. 17.
    H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Interface engineering of highly efficient perovskite solar cells. Science (80-.) 345(6196), 542–546 (2014)CrossRefGoogle Scholar
  18. 18.
    V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Olivier, R. Silbey, J.-L. Brédas, Charge transport in organic semiconductors. Chem. Rev. 107(4), 926–952 (2007)CrossRefGoogle Scholar
  19. 19.
    N. Karl, Charge carrier transport in organic semiconductors. Synth. Met. 133–134, 649–657 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Muhammad Imran Ahmed
    • 1
  • Hammad Tanveer Butt
    • 4
  • Zakir Hussain
    • 1
  • Iftikhar Ahmed Shahid
    • 3
  • Amir Habib
    • 2
    • 1
  1. 1.School of Chemical and Materials EngineeringNational University of Sciences and TechnologyIslamabadPakistan
  2. 2.Department of Physics, College of SciencesUniversity of Hafar Al BatinHafar Al BatinSaudi Arabia
  3. 3.USPCAS-ENational University of Sciences and TechnologyIslamabadPakistan
  4. 4.College of Electrical and Mechanical EngineeringNational University of Sciences and TechnologyIslamabadPakistan

Personalised recommendations