Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 11, pp 12000–12008 | Cite as

Synthesis and characterization of some ferrite nanoparticles prepared by co-precipitation method

  • Y. B. Kannan
  • R. Saravanan
  • N. Srinivasan
  • K. Praveena
  • K. Sadhana


Two different compositions of ferrites namely Ni0.53Cu0.12Zn0.35Fe2O4 and Mg0.2Cu0.3Zn0.5Fe2O4 have been synthesized by co-precipitation method and sintered at 900 °C/5h. The prepared samples are analyzed for their structural, morphology, elemental composition and magnetic properties by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray fluorescence and vibrating sample magnetometer respectively. Spinel phase, along with the hematite as an additional phase, in both samples is confirmed from the XRD characterizations results. Rietveld refinement method is employed to analyze the structural parameters of the samples. Density and saturation magnetization have found to be increased from that of undoped sample values. Homogeneous distributions of particles and well defined particle sizes are revealed from SEM studies of the samples. Maximum entropy method is employed to compute the numerical value of various sites interactions in ferrites and the findings are compared and analyzed with that of magnetic studies.


Ferrite ZnFe2O4 Cation Distribution Maximum Entropy Method CuFe2O4 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Compliance with ethical standards

Conflict of interest

The authors declares that they have no conflict of interest.


  1. 1.
    A. Bhaskar, S.R. Murthy, Effect of sintering temperature on the electrical properties of Mn (1 %) added MgCuZn ferrites by microwave sintering method. J. Mater. Sci.: Mater. Electron. 24, 3292–3298 (2013)Google Scholar
  2. 2.
    N. Varalaxmi, K.V. Sivakumar, Studies on structural and electrical properties of ball-milled NiCuZn–MgCuZn nanocomposites ferrites. Metall. Mater. Trans. A 45A, 1579–1585 (2014)CrossRefGoogle Scholar
  3. 3.
    Ch. Sujatha, K. Venugopal Reddy, K. Sowri Babu, A. Ramachandra Reddy, K.H. Rao, Effects of heat treatment conditions on the structural and magnetic properties of MgCuZn nano ferrite. Ceram. Int. 38, 5813–5820 (2012)CrossRefGoogle Scholar
  4. 4.
    M.A. Gabal, A.M. Asiri, Y.M. AlAngari, On the structural and magnetic properties of La-substituted NiCuZn ferrites prepared using egg-white. Ceram. Int. 37, 2625–2630 (2011)CrossRefGoogle Scholar
  5. 5.
    H.-X. Zhou, Z. Wang, F.-Q. Huang, L.-J. Ni, J. He, A study on structure and magnetic properties of Mg–Cu–Zn ferrite synthesized by co-precipitation method. IEEE Trans. Magn. 48, 3626–3629 (2012)CrossRefGoogle Scholar
  6. 6.
    S.R. Murthy, Low temperature sintering of MgCuZn ferrite and its electrical and magnetic properties. Bull. Mater. Sci. 24, 379–383 (2001)CrossRefGoogle Scholar
  7. 7.
    P.K. Roy, J. Bera, Characterization of nanocrystalline NiCuZn ferrite powders synthesized by sol–gel auto-combustion method. J. Mater. Process. Technol. 197, 279–283 (2008)CrossRefGoogle Scholar
  8. 8.
    M.R. Barati, Characterization and preparation of nanocrystalline MgCuZn ferrite powders synthesized by sol–gel auto-combustion method. J. Sol-Gel. Sci. Technol. 52, 171–178 (2009)CrossRefGoogle Scholar
  9. 9.
    I.H. Gul, W. Ahmed, A. Maqsood, Electrical and magnetic characterization of nanocrystalline Ni–Zn ferrite synthesis by co-precipitation route. J. Magn. Magn. Mater. 320, 270–275 (2008)CrossRefGoogle Scholar
  10. 10.
    H.M. Zaki, S.H. Al-Heniti, T.A. Elmosalami, Structural, magnetic and dielectric studies of copper substituted nano-crystalline spinel magnesium zinc ferrite. J. Alloy. Compd. 633, 104–114 (2015)CrossRefGoogle Scholar
  11. 11.
    M.R. Barati, Influence of zinc substitution on magnetic and electrical properties of MgCuZn ferrite nanocrystalline powders prepared by sol–gel, auto-combustion method. J. Alloy. Compd. 478, 375–380 (2009)CrossRefGoogle Scholar
  12. 12.
    M.A. Gabal, S.A. Al-Thabaiti, E.H. El-Mossalamy, M. Mokhtar, Structural, magnetic and electrical properties of Ga-substituted NiCuZn nanocrystalline ferrite. Ceram. Int. 36, 1339–1346 (2010)CrossRefGoogle Scholar
  13. 13.
    K. Kelm, M. Mader, The symmetry of ordered cubic γ-Fe2O3 investigated by TEM. Z. Naturfosch. 61b, 665–671 (2006)Google Scholar
  14. 14.
    S.M. Patange, S.E. Shirsath, S.S. Jadhav, K.M. Jadhav, Cation distribution study of nanocrystalline NiFe2−xCrxO4 ferrite by XRD, magnetization and Mossbauer spectroscopy. Phys. Status Solidi A 209, 347–352 (2012)CrossRefGoogle Scholar
  15. 15.
    K.M. Batoo, M.S. Ansari, Low temperature-fired Ni–Cu–Zn ferrite nanoparticles through auto-combustion method for multilayer chip inductor applications. Nanoscale Res. Lett. 7, 112 (2012)CrossRefGoogle Scholar
  16. 16.
    H.-X. Zhou, Z. Wang, F.-Q. Huang, L.J. Ni, J. He, A study on structure and magnetic properties of Mg–Cu–Zn ferrite synthesized by co-precipitation method. IEEE Trans. Magn. 48, 3626–3629 (2012)CrossRefGoogle Scholar
  17. 17.
    M.A. Gabal, Y.M. Al Angari, Low-temperature synthesis of nanocrystalline NiCuZn ferrite and the effect of Cr substitution on its electrical properties. J. Magn. Magn. Mater. 322, 3159–3165 (2010)CrossRefGoogle Scholar
  18. 18.
    H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)CrossRefGoogle Scholar
  19. 19.
    V. Petřiček, M. Dušek, L. Palatinus, JANA2000, the crystallographic computing system (Institute of Physics, Academy of Sciences of the Czech Republic, Praha, 2000)Google Scholar
  20. 20.
    P.A. Jadhav, R.S. Devan, Y.D. Kolekar, B.K. Chougule, Structural, electrical and magnetic characterizations of Ni–Cu–Zn ferrite synthesized by citrate precursor method. J. Phys. Chem. Solids 70, 396–400 (2009)CrossRefGoogle Scholar
  21. 21.
    Ch. Sujatha, K. Venugopal Reddy, K. Sowri Babu, A. Ramachandrareddy, K.H. Rao, Effect of sintering temperature on electromagnetic properties of NiCuZn ferrite. Ceram. Int. 39, 3077–3086 (2013)CrossRefGoogle Scholar
  22. 22.
    H. Bahiraei, M.Z. Shoushtari, K. Gheisari, C.K. Ong, The effect of sintering temperature on the electromagnetic properties of nanocrystalline MgCuZn ferrite prepared by sol–gel auto combustion method. Mater. Lett. 122, 129–132 (2014)CrossRefGoogle Scholar
  23. 23.
    D.S. Nikam, S.V. Jadhav, V.M. Khot, R.A. Bohara, C.K. Hong, S.S. Mali, S.H. Pawar, Cation distribution, structural, morphological and magnetic properties of Co1−xZnxFe2O4 (x = 0–1) nanoparticles. RSC Adv. 5, 2338–2345 (2015)CrossRefGoogle Scholar
  24. 24.
    N. Varalaxmi, K.V. Sivakumar, Structural, magnetic, DC–AC electrical conductivities and thermo electric studies of MgCuZn Ferrites for microinductor applications. Mater. Sci. Eng., C 33, 145–152 (2013)CrossRefGoogle Scholar
  25. 25.
    D.V. Kurmude, R.S. Barkule, A.V. Raut, D.R. Shengule, K.M. Jadhav, X-ray diffraction and cation distribution studies in zinc-substituted nickel ferrite nanoparticles. J. Supercond. Nov. Magn. (2013). doi: 10.1007/s10948-013-2305-2 Google Scholar
  26. 26.
    S.F. Gull, G.J. Daniel, Nature 272, 686 (1978)CrossRefGoogle Scholar
  27. 27.
    R. Saravanan, Y. Ono, M. Ohno, K. Isshiki, K. Ohno, T. Kajitani, Electron density distribution in GaAs using MEM. J. Phys. Chem. Solids 64, 51–58 (2003)CrossRefGoogle Scholar
  28. 28.
    F. Izumi, R.A. Dilanien, Recent research developments in physics, Part II, vol. 3 (Transworld Research Network, Trivandrum, 2002), pp. 699–726Google Scholar
  29. 29.
    K. Momma, F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653–658 (2008)CrossRefGoogle Scholar
  30. 30.
    V.K. Lakhani, T.K. Pathak, N.H. Vasoya, K.B. Modi, Structural parameters and X-ray Debye temperature determination study on copper–ferrite–aluminates. Solid State Sci. 13, 539–547 (2011)CrossRefGoogle Scholar
  31. 31.
    F.S. Tehrani, V. Daadmehr, A.T. Rezakhani, R.H. Akbarnejad, S. Gholipour, J. Supercond. Nov. Magn. (2012). doi: 10.1007/s10948-012-1655-5 Google Scholar
  32. 32.
    M.P. Reddy, I.G. Kim, D.S. Yoo, W. Madhuri, N.R. Reddy, K.V. SivaKumar, R.R. Reddy, Mater. Sci. Appl. 3(3), 628–632 (2012)Google Scholar
  33. 33.
    M.G. Naseri, E.B. Saion, M. Hashim, A.H. Shaari, H.A. Ahangar, Synthesis and characterization of zinc ferrite nanoparticles by a thermal treatment method. Solid State Commun. 151, 1031–1035 (2011)CrossRefGoogle Scholar
  34. 34.
    D.N. Bhosale, V.M.S. Verenkar, K.S. Rane, P.P. Bakare, S.R. Sawant, Mater. Chem. Phys. 59, 57–62 (1999)CrossRefGoogle Scholar
  35. 35.
    M.M. Rashad, R.M. Mohamed, M.A. Ibrahim, L.F.M. Ismail, E.A. Abdel-Aal, Magnetic and catalytic properties of cubic copper ferrite nanopowders synthesized from secondary resources. Adv. Powder Technol. 23, 315–323 (2012)CrossRefGoogle Scholar
  36. 36.
    A.C. Druc, A.M. Dumitrescu, A.I. Borhan, V. Nica, A.R. Iordan, M.N. Palamaru, Optimization of synthesis conditions and the study of magnetic and dielectric properties for MgFe2O4 ferrite. Cent. Eur. J. Chem. 11(8), 1330–1342 (2013)Google Scholar
  37. 37.
    C. Choodamani, G.P. Nagabhushana, S. Ashoka, B.D. Prasad, B. Rudraswamy, G.T. Chandrappa, Structural and magnetic studies of Mg(1 − x)ZnxFe2O4 nanoparticles prepared by a solution combustion method. J. Alloy. Compd. 578, 103–109 (2013)CrossRefGoogle Scholar
  38. 38.
    K. Ramakrishna, D. Ravinder, K. Vijaya Kumar, Ch. Abraham Lincon, Synthesis XRD & SEM studies of zinc substitution in nickel ferrites by citrate gel technique. World J. Condens. Matter Phys. 2, 153–159 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Y. B. Kannan
    • 1
  • R. Saravanan
    • 2
  • N. Srinivasan
    • 3
  • K. Praveena
    • 4
    • 6
  • K. Sadhana
    • 5
    • 7
  1. 1.Department of PhysicsArumugam Pillai Seethai Ammal CollegeTiruppatturIndia
  2. 2.Research Centre and PG Department of PhysicsThe Madura CollegeMaduraiIndia
  3. 3.Research Centre and PG Department of PhysicsThiagarajar CollegeMaduraiIndia
  4. 4.School of PhysicsUniveristy of HyderabadHyderabadIndia
  5. 5.Material Research CenterIndian Institute of ScienceBangaloreIndia
  6. 6.Department of PhysicsNational Taiwan Normal UniversityTaipeiTaiwan
  7. 7.Department of Physics, University College of ScienceOsmania UniversitySaifabad, HyderabadIndia

Personalised recommendations