Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 11, pp 11974–11985 | Cite as

Optical, electrical, thermal and electrochemical studies of spin-coated polyblend-ZnO nanocomposites

  • Sharanappa Chapi
  • H. Devendrappa


Ternary based Polyethylene oxide/Polyvinylpyrrolidone/Zinc oxide nanoparticle polyblend film was prepared by Spin-coat method on quartz substrates. The XRD study was carried out to investigate the structural phase and it was observed that crystallinity found decreases with increasing nano concentration. The surface morphology of the films was done using Scanning Electronic Microscope (SEM); images reveal substantial changes in the morphology. The optical energy band gap and Urbach energy are found to decrease with increase the dopant concentration. The transference numbers for ionic (tion) and electronic (tele) were evaluated using Wagner’s polarization technique. The frequency-dependent AC conductivity followed the Jonscher’s power law. The PEO/PVP-6 wt% ZnO composite showed a reversible electrochemical response up to 500 cycles. The obtained results represent that the ternary based solid polymer electrolytes are prominent materials for using solid state batteries and transparent optoelectronic materials and devices.


Polymer Electrolyte Optical Conductivity Transference Number Urbach Energy Solid State Batterie 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by the University Grants Commission (project fellowship F.No. 41-879/2012/SR dated 25-07-2012) Delhi, INDIA, which is gratefully acknowledged.


  1. 1.
    K. Lewandowska, Thermochim. Acta 493, 42 (2009)CrossRefGoogle Scholar
  2. 2.
    K. Kabiri, H. Mirzadeh, M.J. Zohuriaan-Mehr, J. Appl. Polym. Sci. 116, 2548 (2010)Google Scholar
  3. 3.
    P.H. Cury Camargo, K.G. Satyanarayana, F. Wypych, Mater. Res. 12, 1 (2009)CrossRefGoogle Scholar
  4. 4.
    T. Marimuthu, N. Anandhan, T. Mahalingam, R. Thangamuthu, M. Mummoorthi, J. Mater. Sci. Mater. Electron. 26, 7577 (2015)CrossRefGoogle Scholar
  5. 5.
    A. Miyake, H. Kominami, H. Tatsuoka, H. Kuwabara, Y. Nakaushi, Y. Hatanaka, J. Cryst. Growth 214, 294 (2000)CrossRefGoogle Scholar
  6. 6.
    S. Sathish, B. Chandar Shekar, S. Chandru Kannan, R. Sengodan, K.P.B. Dinesh, R. Ranjithkumar, Int. J. Polym. Anal. Charact. 20, 29 (2015)CrossRefGoogle Scholar
  7. 7.
    J. Lee, D. Bhattacharyya, A.J. Easteal, J.B. Metson, Curr. Appl. Phys. 8, 42 (2008)CrossRefGoogle Scholar
  8. 8.
    S. Chapi, S. Raghu, H. Devendrappa, Ionics 22, 803 (2016)CrossRefGoogle Scholar
  9. 9.
    K. Kesavan, C.M. Mathew, S. Rajendran, Chin. Chem. Lett. 25, 1428 (2014)CrossRefGoogle Scholar
  10. 10.
    M.H. Ugur, R.D. Toker, N. Kayaman-Apohan, A. Güngör, Express Polym. Lett. 8, 123 (2014)CrossRefGoogle Scholar
  11. 11.
    A. Bakry, Egypt. J. Solids 31, 191 (2008)Google Scholar
  12. 12.
    S. Ravichandran, Int. J. Nano Dimens. 4, 153 (2013)Google Scholar
  13. 13.
    X. Zhang, W. Jiang, Y. Ye, Z. Feng, Z. Sun, F. Li, L. Hao, J. Chu, J. Magn. Magn. Mater. 323, 1440 (2011)CrossRefGoogle Scholar
  14. 14.
    K. Naveen Kumar, M. Vasudeva Reddy, L. Vijayalakshmi, Y.C. Ratnakaram, Bull. Mater. Sci. 38, 1015 (2015)CrossRefGoogle Scholar
  15. 15.
    Y. Hou, J. Feng, Y. Wang, L. Li, J. Mater. Sci. Mater. Electron. 27, 6615 (2016)CrossRefGoogle Scholar
  16. 16.
    S. Chapi, H. Devendrappa, J. Res. Updates Polym. Sci. 4, 205 (2015)Google Scholar
  17. 17.
    O.E. Geiculescu, J. Yang, H. Blau, R. Bailey-Walsh, S.E. Creager, W.T. Pennington, D.D. DesMarteau, Solid State Ionics 148, 173 (2002)CrossRefGoogle Scholar
  18. 18.
    R.M. Hodge, G.H. Edward, G.P. Simon, Polymer 37, 1371 (1996)CrossRefGoogle Scholar
  19. 19.
    A. Matei, I. Cernica, O. Cadar, C. Roman, V. Schiopu, Int. J. Mater. Form. 1, 767 (2008)CrossRefGoogle Scholar
  20. 20.
    J.W. Robinson, E.M. Skelly Frame, G.M. Frame, Undergraduate Instrumental Analysis, 6th edn. (Marcel Dekker, New York, 2005)Google Scholar
  21. 21.
    A. Abdel-Galil, M.R. Balboul, A. Atta, I.S. Yahia, A. Sharaf, Phys. B 447, 35 (2014)CrossRefGoogle Scholar
  22. 22.
    D.S. Davis, T.S. Shalliday, Phys. Rev. 118, 1020 (1960)CrossRefGoogle Scholar
  23. 23.
    M. Abdelaziz, M.M. Ghannam, Phys. B 405, 958 (2010)CrossRefGoogle Scholar
  24. 24.
    A. Das, S. Dhara, A. Patnaik, Phys. Rev. B 59, 11069 (1999)CrossRefGoogle Scholar
  25. 25.
    M.A. Majeed Khan, M. Wasi Khan, M. Alhoshan, M.S. AlSalhi, A.S. Aldwayyan, Appl. Phys. A 100, 45 (2010)CrossRefGoogle Scholar
  26. 26.
    S. Ilican, Y. Caglar, M. Caglar, F. Yakuphanoglu, Phys. E 35, 131 (2006)CrossRefGoogle Scholar
  27. 27.
    D. Fink, W.H. Chung, R. Klett, A. Schmoldt, J. Cardoso, R. Montiel, M.H. Vazquez, L. Wang, F. Hosoi, H. Omichi, P. Goppelt-Langer, Radiat. Eff. Defect. Solids 133, 193 (1995)CrossRefGoogle Scholar
  28. 28.
    T.K. Hamad, R.M. Yusop, W.A. Al-Taay, B. Abdullah, E. Yousif, Int. J. Polym. Sci. 2014, 1 (2014)CrossRefGoogle Scholar
  29. 29.
    A.A.M. Farag, I.S. Yahia, F. Yakuphanoglu, M. Kandaz, W.A. Farooq, Opt. Commun. 285, 3122 (2012)CrossRefGoogle Scholar
  30. 30.
    M. Caglar, S. Ilican, Y. Caglar, F. Yakuphanoglu, Appl. Surf. Sci. 255, 4491 (2009)CrossRefGoogle Scholar
  31. 31.
    A.A.M. Farag, I.S. Yahia, Opt. Commun. 283, 4310 (2010)CrossRefGoogle Scholar
  32. 32.
    M.M. El-Nahass, A.A.M. Farag, H.S. Soliman, Opt. Commun. 284, 2515 (2011)CrossRefGoogle Scholar
  33. 33.
    N. Reddeppa, A.K. Sharma, V.V.R. Narasimha Rao, W. Chen, Measurement 47, 33 (2014)CrossRefGoogle Scholar
  34. 34.
    K. Sivakumar, V. SenthilKumar, J.J. Shim, Y. Haldorai, Synth. React. Inorg. Met. Org. Nano Met. Chem. 44, 1414 (2014)CrossRefGoogle Scholar
  35. 35.
    B.E. Conway, J. Electrochem. Soc. 138, 1539 (1991)CrossRefGoogle Scholar
  36. 36.
    A.K. Joncher, J. Matter. Sci. 13, 553 (1987)CrossRefGoogle Scholar
  37. 37.
    A.G. Pandolfo, A.F. Hollenkamp, J. Power Sources 157, 11 (2006)CrossRefGoogle Scholar
  38. 38.
    Z.B. Wen, Q.T. Qu, Q. Gao, X.W. Zheng, Z.H. Hu, Y.P. Wu, Y.F. Liu, X.J. Wang, Electrochem. Commun. 11, 715 (2009)CrossRefGoogle Scholar
  39. 39.
    A.M. Gaur, D.S. Rana, J. Mater. Sci. Mater. Electron. 27, 2293 (2016)CrossRefGoogle Scholar
  40. 40.
    P. Gogoi, P. Srinivas, P. Sharma, D. Pamu, J. Electronic Mater. 45, 899 (2016)CrossRefGoogle Scholar
  41. 41.
    A.K. Jonscher, Nature 264, 673 (1977)CrossRefGoogle Scholar
  42. 42.
    K. Funke, Prog. Solid State Chem. 22, 111 (1993)CrossRefGoogle Scholar
  43. 43.
    S. Konwer, J. Maiti, S.K. Dolui, Mater. Chem. Phys. 128, 283 (2011)CrossRefGoogle Scholar
  44. 44.
    S. Konwer, J. Mater. Sci. Mater. Electron. 27, 4139 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PhysicsMangalore UniversityMangalagangotriIndia

Personalised recommendations