Skip to main content

Advertisement

Log in

Optical, electrical, thermal and electrochemical studies of spin-coated polyblend-ZnO nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ternary based Polyethylene oxide/Polyvinylpyrrolidone/Zinc oxide nanoparticle polyblend film was prepared by Spin-coat method on quartz substrates. The XRD study was carried out to investigate the structural phase and it was observed that crystallinity found decreases with increasing nano concentration. The surface morphology of the films was done using Scanning Electronic Microscope (SEM); images reveal substantial changes in the morphology. The optical energy band gap and Urbach energy are found to decrease with increase the dopant concentration. The transference numbers for ionic (tion) and electronic (tele) were evaluated using Wagner’s polarization technique. The frequency-dependent AC conductivity followed the Jonscher’s power law. The PEO/PVP-6 wt% ZnO composite showed a reversible electrochemical response up to 500 cycles. The obtained results represent that the ternary based solid polymer electrolytes are prominent materials for using solid state batteries and transparent optoelectronic materials and devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. K. Lewandowska, Thermochim. Acta 493, 42 (2009)

    Article  Google Scholar 

  2. K. Kabiri, H. Mirzadeh, M.J. Zohuriaan-Mehr, J. Appl. Polym. Sci. 116, 2548 (2010)

    Google Scholar 

  3. P.H. Cury Camargo, K.G. Satyanarayana, F. Wypych, Mater. Res. 12, 1 (2009)

    Article  Google Scholar 

  4. T. Marimuthu, N. Anandhan, T. Mahalingam, R. Thangamuthu, M. Mummoorthi, J. Mater. Sci. Mater. Electron. 26, 7577 (2015)

    Article  Google Scholar 

  5. A. Miyake, H. Kominami, H. Tatsuoka, H. Kuwabara, Y. Nakaushi, Y. Hatanaka, J. Cryst. Growth 214, 294 (2000)

    Article  Google Scholar 

  6. S. Sathish, B. Chandar Shekar, S. Chandru Kannan, R. Sengodan, K.P.B. Dinesh, R. Ranjithkumar, Int. J. Polym. Anal. Charact. 20, 29 (2015)

    Article  Google Scholar 

  7. J. Lee, D. Bhattacharyya, A.J. Easteal, J.B. Metson, Curr. Appl. Phys. 8, 42 (2008)

    Article  Google Scholar 

  8. S. Chapi, S. Raghu, H. Devendrappa, Ionics 22, 803 (2016)

    Article  Google Scholar 

  9. K. Kesavan, C.M. Mathew, S. Rajendran, Chin. Chem. Lett. 25, 1428 (2014)

    Article  Google Scholar 

  10. M.H. Ugur, R.D. Toker, N. Kayaman-Apohan, A. Güngör, Express Polym. Lett. 8, 123 (2014)

    Article  Google Scholar 

  11. A. Bakry, Egypt. J. Solids 31, 191 (2008)

    Google Scholar 

  12. S. Ravichandran, Int. J. Nano Dimens. 4, 153 (2013)

    Google Scholar 

  13. X. Zhang, W. Jiang, Y. Ye, Z. Feng, Z. Sun, F. Li, L. Hao, J. Chu, J. Magn. Magn. Mater. 323, 1440 (2011)

    Article  Google Scholar 

  14. K. Naveen Kumar, M. Vasudeva Reddy, L. Vijayalakshmi, Y.C. Ratnakaram, Bull. Mater. Sci. 38, 1015 (2015)

    Article  Google Scholar 

  15. Y. Hou, J. Feng, Y. Wang, L. Li, J. Mater. Sci. Mater. Electron. 27, 6615 (2016)

    Article  Google Scholar 

  16. S. Chapi, H. Devendrappa, J. Res. Updates Polym. Sci. 4, 205 (2015)

    Google Scholar 

  17. O.E. Geiculescu, J. Yang, H. Blau, R. Bailey-Walsh, S.E. Creager, W.T. Pennington, D.D. DesMarteau, Solid State Ionics 148, 173 (2002)

    Article  Google Scholar 

  18. R.M. Hodge, G.H. Edward, G.P. Simon, Polymer 37, 1371 (1996)

    Article  Google Scholar 

  19. A. Matei, I. Cernica, O. Cadar, C. Roman, V. Schiopu, Int. J. Mater. Form. 1, 767 (2008)

    Article  Google Scholar 

  20. J.W. Robinson, E.M. Skelly Frame, G.M. Frame, Undergraduate Instrumental Analysis, 6th edn. (Marcel Dekker, New York, 2005)

    Google Scholar 

  21. A. Abdel-Galil, M.R. Balboul, A. Atta, I.S. Yahia, A. Sharaf, Phys. B 447, 35 (2014)

    Article  Google Scholar 

  22. D.S. Davis, T.S. Shalliday, Phys. Rev. 118, 1020 (1960)

    Article  Google Scholar 

  23. M. Abdelaziz, M.M. Ghannam, Phys. B 405, 958 (2010)

    Article  Google Scholar 

  24. A. Das, S. Dhara, A. Patnaik, Phys. Rev. B 59, 11069 (1999)

    Article  Google Scholar 

  25. M.A. Majeed Khan, M. Wasi Khan, M. Alhoshan, M.S. AlSalhi, A.S. Aldwayyan, Appl. Phys. A 100, 45 (2010)

    Article  Google Scholar 

  26. S. Ilican, Y. Caglar, M. Caglar, F. Yakuphanoglu, Phys. E 35, 131 (2006)

    Article  Google Scholar 

  27. D. Fink, W.H. Chung, R. Klett, A. Schmoldt, J. Cardoso, R. Montiel, M.H. Vazquez, L. Wang, F. Hosoi, H. Omichi, P. Goppelt-Langer, Radiat. Eff. Defect. Solids 133, 193 (1995)

    Article  Google Scholar 

  28. T.K. Hamad, R.M. Yusop, W.A. Al-Taay, B. Abdullah, E. Yousif, Int. J. Polym. Sci. 2014, 1 (2014)

    Article  Google Scholar 

  29. A.A.M. Farag, I.S. Yahia, F. Yakuphanoglu, M. Kandaz, W.A. Farooq, Opt. Commun. 285, 3122 (2012)

    Article  Google Scholar 

  30. M. Caglar, S. Ilican, Y. Caglar, F. Yakuphanoglu, Appl. Surf. Sci. 255, 4491 (2009)

    Article  Google Scholar 

  31. A.A.M. Farag, I.S. Yahia, Opt. Commun. 283, 4310 (2010)

    Article  Google Scholar 

  32. M.M. El-Nahass, A.A.M. Farag, H.S. Soliman, Opt. Commun. 284, 2515 (2011)

    Article  Google Scholar 

  33. N. Reddeppa, A.K. Sharma, V.V.R. Narasimha Rao, W. Chen, Measurement 47, 33 (2014)

    Article  Google Scholar 

  34. K. Sivakumar, V. SenthilKumar, J.J. Shim, Y. Haldorai, Synth. React. Inorg. Met. Org. Nano Met. Chem. 44, 1414 (2014)

    Article  Google Scholar 

  35. B.E. Conway, J. Electrochem. Soc. 138, 1539 (1991)

    Article  Google Scholar 

  36. A.K. Joncher, J. Matter. Sci. 13, 553 (1987)

    Article  Google Scholar 

  37. A.G. Pandolfo, A.F. Hollenkamp, J. Power Sources 157, 11 (2006)

    Article  Google Scholar 

  38. Z.B. Wen, Q.T. Qu, Q. Gao, X.W. Zheng, Z.H. Hu, Y.P. Wu, Y.F. Liu, X.J. Wang, Electrochem. Commun. 11, 715 (2009)

    Article  Google Scholar 

  39. A.M. Gaur, D.S. Rana, J. Mater. Sci. Mater. Electron. 27, 2293 (2016)

    Article  Google Scholar 

  40. P. Gogoi, P. Srinivas, P. Sharma, D. Pamu, J. Electronic Mater. 45, 899 (2016)

    Article  Google Scholar 

  41. A.K. Jonscher, Nature 264, 673 (1977)

    Article  Google Scholar 

  42. K. Funke, Prog. Solid State Chem. 22, 111 (1993)

    Article  Google Scholar 

  43. S. Konwer, J. Maiti, S.K. Dolui, Mater. Chem. Phys. 128, 283 (2011)

    Article  Google Scholar 

  44. S. Konwer, J. Mater. Sci. Mater. Electron. 27, 4139 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the University Grants Commission (project fellowship F.No. 41-879/2012/SR dated 25-07-2012) Delhi, INDIA, which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Devendrappa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chapi, S., Devendrappa, H. Optical, electrical, thermal and electrochemical studies of spin-coated polyblend-ZnO nanocomposites. J Mater Sci: Mater Electron 27, 11974–11985 (2016). https://doi.org/10.1007/s10854-016-5344-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5344-1

Keywords

Navigation