Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 11, pp 11825–11833 | Cite as

Disorder induced conductivity enhancement in SHI irradiated undoped and N-doped 6H-SiC single crystals

  • K. Sivaji
  • E. Viswanathan
  • S. Sellaiyan
  • R. Murugaraj
  • D. Kanjilal


We have studied undoped and N-doped 6H-SiC in its pristine and swift heavy ion (SHI) irradiated (150 MeV Ag12+ ions) forms by impedance spectroscopy at low temperatures. Fitting analysis of the complex impedance spectra reveals two time constants (R 1 Q 1 and R 2 Q 2) for the irradiated samples and single time constant (R 1 Q 1) for the pristine undoped and N-doped samples. This indicates a decrease in the grain interior conductivity (σdc) for the irradiated undoped 6H-SiC and an increase for the N-doped samples. The increased conductivity in the irradiated N-doped samples is due to the possibility of defect trapping and by the defect. The Activation energy (E a) exhibited an increase in the undoped samples and decrease in the N-doped samples. The σ dc and the E a results suggest that the (de-)trapping effect on the defect states is significant in the irradiated samples. Furthermore, the impedance results support the formation of homogenous/heterogeneous defect structures in the irradiated samples. Impedance studies also reveals the disappearance of the charge carriers due to the (de-) trapping at the defect states at damage zone interface (DZI). The presence of disorder and the nature of the disorder are discussed.


Charge Carrier Irradiate Sample Defect State Undoped Sample Electrical Modulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the support of Inter University Accelerator Centre (IUAC), New Delhi for providing the Accelerator facility and financial support in the form of a Junior Research Fellowship to E.V. (UPUF-39306). The author KS gratefully acknowledge the National Centre for Nanoscience and Nanotechnology (NCNSNT), and DST PURSE program of University of Madras for the financial support.


  1. 1.
    D.S. Mebane, R.A. Gerhardt, J. Am. Ceram. Soc. 89, 538–543 (2006)CrossRefGoogle Scholar
  2. 2.
    S. Duman, E. Gür, S. Dogan, S. Tüzemen, Curr. Appl. Phys. 9, 1181–1185 (2009)CrossRefGoogle Scholar
  3. 3.
    P. Sobas, O. Nilsen, H. Fjellvag, B.G. Svensson, Mater. Sci. Forum 645–648, 531–534 (2010)CrossRefGoogle Scholar
  4. 4.
    P.A. Sobas, U. Grossner, B.G. Svensson, Mater. Sci. Forum 615, 501–504 (2009)CrossRefGoogle Scholar
  5. 5.
    D. Avasthi, Hyperfine Interact. 160, 95–106 (2005)CrossRefGoogle Scholar
  6. 6.
    A.A. Kocherzhenko, F.C. Grozema, S.A. Vyrko, N.A. Poklonski, Laurens D.A. Siebbeles, J. Phys. Chem. C 114, 20424–20430 (2010)CrossRefGoogle Scholar
  7. 7.
    N.A. Poklonski, N.I. Gorbachuk, M.I. Tarasik, S.V. Shpakovski, V.A. Philipenya, V.A. Skuratov, A. Wieck, T. Ko tunovicz, Acta Phys. Pol. A 120, 111 (2010)CrossRefGoogle Scholar
  8. 8.
    T. Ohshima, T. Satoh, M. Oikawa, S. Onoda, S. Hishiki, T. Hirao, T. Kamiya, T. Yokoyama, A. Sakamoto, R. Tanaka, Mater. Sci. Forum 556–557, 913–916 (2007)CrossRefGoogle Scholar
  9. 9.
    C. Basavaraja, N.R. Kim, E.A. Jo, R. Pierson, D.S. Huh, Bull. Korean Chem. Soc. 30, 1543 (2009)CrossRefGoogle Scholar
  10. 10.
    N.L. Singh, S. Shah, A. Qureshi, A. Tripathi, F. Singh, D.K. Avasthi, P.M. Raole, Bull. Mater. Sci. 34, 81–88 (2011)CrossRefGoogle Scholar
  11. 11.
    S.G. Prabhu, P. Mohan Rao, D.K. Avasthi, S. Guptha, Nucl. Instrum. Methods Phys. Res. Sect. B 174, 159–162 (2001)CrossRefGoogle Scholar
  12. 12.
    A. Dogra, M. Singh, R. Kumar, Nucl. Instrum. Methods Phys. Res. Sect. B 207, 296 (2003)CrossRefGoogle Scholar
  13. 13.
    N.A. Poklonski, N.I. Gorbachuk, S.V. Shpakovski, A.V. Petrov, S.B. Lastovskii, D. Fink, A. Wieck, Nucl. Instrum. Methods Phys. Res., Sect. B 266, 5007 (2008)CrossRefGoogle Scholar
  14. 14.
    A. Kassiba, M. Tabellout, S. Charpentier, N. Herlin, J.R. Emery, Solid State Commun. 115, 389 (2000)CrossRefGoogle Scholar
  15. 15.
    M. Tabellout, A. Kassiba, S. Tkaczyk, L. Laskowski, J. Swiatek, J. Phys.: Condens. Matter 18, 1143 (2006)Google Scholar
  16. 16.
    Y. Yao, A. Jänis, U. Klement, J. Mater. Sci. 43, 1094–1101 (2008)CrossRefGoogle Scholar
  17. 17.
    S.D. Kouimtzi, P.C. Banbury, J. Phys. C: Solid State Phys. 15, 1137 (1982)CrossRefGoogle Scholar
  18. 18.
    S.D. Kouimtzi, P.C. Banbury, J. Phys. C: Solid State Phys. 15, 3657 (1982)CrossRefGoogle Scholar
  19. 19.
    N. Ocelic, R. Hillenbrand, Nat. Mater. 3, 606–609 (2004)CrossRefGoogle Scholar
  20. 20.
    K. Sivaji, E. Viswanathan, S. Selvakumar, S. Sankar, D. Kanjilal, J. Alloys Compd. 587, 733–738 (2014)CrossRefGoogle Scholar
  21. 21.
    E. Viswanathan, Y.S. Katharria, S. Selvakumar, A. Arulchakkaravarthi, D. Kanjilal, K. Sivaji, Nucl. Instrum. Methods Phys. Res. Sect. B 269, 1103–1107 (2011)CrossRefGoogle Scholar
  22. 22.
    D. Paul Joseph, S. Ganesan, M. Kovendhan, S. Austin Suthanthiraraj, P. Maruthamuthu, C. Venkateswaran, Phys. Status Solidi. 208, 2215–2219 (2011)CrossRefGoogle Scholar
  23. 23.
    D.K. Schroder, Semiconductor Materials and Device Characterization (Wiley, New Jersey, 2006)Google Scholar
  24. 24.
    D.A. Neamen, Semiconductor Physics and Devices: Basic Principles (McGraw-Hill, Boston, 2003)Google Scholar
  25. 25.
    S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)Google Scholar
  26. 26.
    J.E. Spanier, A.C. West, I.P. Herman, J. Electrochem. Soc. 148, C663–C667 (2001)CrossRefGoogle Scholar
  27. 27.
    J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985)Google Scholar
  28. 28.
    M. Toulemonde, C. Dufour, E. Paumier, Phys. Rev. B 46, 14362 (1992)CrossRefGoogle Scholar
  29. 29.
    B.A. Boukamp, Solid State Ionics 18, 136–140 (1986)CrossRefGoogle Scholar
  30. 30.
    E. Viswanathan, R. Murugaraj, S. Selvakumar, D. Kanjilal, K. Sivaji, AIP Conf. Proc. 1349, 991–992 (2011)CrossRefGoogle Scholar
  31. 31.
    L.K. Pan, H.T. Huang, C.Q. Sun, J. Artic. 94, 2695–2700 (2003)Google Scholar
  32. 32.
    S.S.N. Bharadwaja, S.B. Krupanidhi, Mater. Sci. Eng. B 78, 75–83 (2000)CrossRefGoogle Scholar
  33. 33.
    E. Axelrod, A. Givant, J. Shappir, Y. Feldman, A. Sa’ar, Phys. Rev. B 65, 165429 (2002)CrossRefGoogle Scholar
  34. 34.
    W.C. Mitchel, W.D. Mitchell, H.E. Smith, G. Landis, S.R. Smith, E.R. Glaser, J. Appl. Phys. 101, 053716–053717 (2007)CrossRefGoogle Scholar
  35. 35.
    W.-H. Jung, J. Appl. Phys. 90, 2455–2458 (2001)CrossRefGoogle Scholar
  36. 36.
    M.A. Fanton, Q. Li, A.Y. Polyakov, M. Skowronski, J. Cryst. Growth 300, 314–318 (2007)CrossRefGoogle Scholar
  37. 37.
    P.B. Macedo, C.T. Moynihan, R. Bose, Phys. Chem. Glasses 13, 171–179 (1972)Google Scholar
  38. 38.
    C.T. Moynihan, L.P. Boesch, N.L. Laberge, Phys. Chem. Glasses 14, 122–125 (1973)Google Scholar
  39. 39.
    N. Baskaran, G. Govindaraj, A. Narayanasamy, Solid State Ionics 98, 217–227 (1997)CrossRefGoogle Scholar
  40. 40.
    G. Williams, D.C. Watts, Trans. Faraday Soc. 66, 80–85 (1970)CrossRefGoogle Scholar
  41. 41.
    G. Williams, D.C. Watts, Chem. Phys. Lett. 8, 485–486 (1971)CrossRefGoogle Scholar
  42. 42.
    D.P. Almond, A.R. West, Solid State Ionics 11, 57–64 (1983)CrossRefGoogle Scholar
  43. 43.
    C. Persson, U. Lindefelt, J. Appl. Phys. 82, 5496 (1997)CrossRefGoogle Scholar
  44. 44.
    C. Elissalde, J. Ravez, J. Mater. Chem. 11, 1957–1967 (2001)CrossRefGoogle Scholar
  45. 45.
    E. Viswanathan, D. Kanjilal, K. Sivaji, S. Ganapathy, J Phys Chem B 115, 7766–7772 (2011)CrossRefGoogle Scholar
  46. 46.
    F. Yakuphanoglu, Phys. B 393, 139–142 (2007)CrossRefGoogle Scholar
  47. 47.
    G.C. Psarras, E. Manolakaki, G.M. Tsangaris, Compos. A-Appl. Sci. 34, 1187–1198 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • K. Sivaji
    • 1
  • E. Viswanathan
    • 1
  • S. Sellaiyan
    • 2
  • R. Murugaraj
    • 3
  • D. Kanjilal
    • 4
  1. 1.Department of Nuclear Physics, Materials Science CentreUniversity of MadrasChennaiIndia
  2. 2.Division of Applied PhysicsUniversity of TsukubaIbarakiJapan
  3. 3.Department of PhysicsAnna UniversityChennaiIndia
  4. 4.Inter-University Accelerator CentreNew DelhiIndia

Personalised recommendations