Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 11, pp 11783–11789 | Cite as

A simple chemical route to synthesis the CuS nanocrystal powder at room temperature and phase transition

  • Balasaheb M. Palve
  • Sandesh R. Jadkar
  • Habib M. Pathan


The CuS nanocrystal powders were prepared by a simple chemical route at room temperature and the effect of the solution concentration on properties of CuS nanocrystal were investigated. These CuS nanocrystals were prepared from the solution in which the ratios of copper to thiosulphate were varied from 1:1 to 1:5. X-ray diffraction patterns suggests that the prepared CuS nanocrystals of ratios 1:3–1:5 were very close to the covellite form of copper sulphide. The optical spectra reveal that the powder 1:3, 1:4 and 1:5 shows high absorbance in the visible region. Raman spectra confirmed the covellite form of the copper sulphide nanocrystal. Scanning electron microscopy revealed the formation of agglomerated CuS hexagonal and flex with significant morphological deviation through sulphur concentration. Photoluminescence spectra indicate the concentrations of sulphur increases then the PL emission intensity is also increased. From TEM images, the morphology of the Copper sulphide powder get changes with increasing volumetric ratio of Cu/S. Mechanism of the CuS nanocrystal formation and phase transition is also discussed.


Solar Cell Chemical Bath Deposition Copper Sulphate Covellite Copper Sulphide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors are thankful to Department Research Development Programme, Department of Physics, Savitribai Phule Pune University India for their financial support for research work.


  1. 1.
    M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P.D. Yang, Nat. Mater. 4, 455 (2005)CrossRefGoogle Scholar
  2. 2.
    M. Grätzel, J. Photochem. Photobiol. A 164, 3 (2004)CrossRefGoogle Scholar
  3. 3.
    J.B. Baxter, E.S. Aydil, Appl. Phys. Lett. 053114, 86 (2005)Google Scholar
  4. 4.
    I. Gur, N.A. Fromer, M.L. Geier, A.P. Alivisatos, Science 310, 462 (2005)CrossRefGoogle Scholar
  5. 5.
    K.S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J.E. Boercker, C.B. Carter, U.R. Kortshagen, D.J. Norris, E.S. Aydil, Nano Lett. 7, 1793 (2007)CrossRefGoogle Scholar
  6. 6.
    B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. Lieber, Nat. 449, 885 (2007)CrossRefGoogle Scholar
  7. 7.
    W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Science 295, 24–25 (2002)CrossRefGoogle Scholar
  8. 8.
    I. Gur, N.A. Fromer, C. Chen, A.G. Kanaras, A.P. Alivisatos, Nano Lett. 7, 409 (2007)CrossRefGoogle Scholar
  9. 9.
    D.H. Cui, J. Xu, T. Zhu, G. Paradee, S. Ashok, M. Gerhold, Appl. Phys. Lett. 88, 183111 (2006)CrossRefGoogle Scholar
  10. 10.
    W.J.E. Beek, M.M. Wienk, R.A. Janssen, J. AdV. Mater. 16, 1009 (2004)CrossRefGoogle Scholar
  11. 11.
    I. Grozdanov, M. Najdoski, J. Solid State Chem. 114, 469–475 (1995)CrossRefGoogle Scholar
  12. 12.
    Q. Xu, B. Huang, Y. Zhao, Y. Yan, R. Noufi, S. Wei, Appl. Phys. Lett. 100, 061906 (2012)CrossRefGoogle Scholar
  13. 13.
    L. Isac, A. Duta, A. Kriza, S. Manolache, M. Nanu, Thin Solid Films 515, 5755–5758 (2007)CrossRefGoogle Scholar
  14. 14.
    Y. Lu, Y. Hou, Y. Wang, Z. Feng, X. Liu, Y. Lü, Synth. Met. 161, 906–910 (2011)CrossRefGoogle Scholar
  15. 15.
    S.V. Bagul, S.D. Chavhan, R. Sharma, J. Phys. Chem. Solids 68, 1623–1629 (2007)CrossRefGoogle Scholar
  16. 16.
    Y. Lu, G. Yi, J. Jia, Y. Liang, Appl. Surf. Sci. 256, 7316–7322 (2010)CrossRefGoogle Scholar
  17. 17.
    P. Zhang, L. Gao, J. Mater. Chem. 13, 2007–2010 (2003)CrossRefGoogle Scholar
  18. 18.
    M.T.S. Nair, L. Guerrero, P.K. Nair, Semicond. Sci. Technol. 13, 1164–1169 (1998)CrossRefGoogle Scholar
  19. 19.
    S.S. Dhasade, J.S. Patil, S.H. Han, M.C. Rath, V.J. Fulari, Mater. Lett. 90, 138–141 (2013)CrossRefGoogle Scholar
  20. 20.
    S.K. Maji, N. Mukherjee, A.K. Dutta, D.N. Srivastava, P. Paul, B. Karmakar, A. Mondal, B. Adhikary, Mater. Chem. Phys. 130, 392–397 (2011)CrossRefGoogle Scholar
  21. 21.
    J. Zou, J. Jiang, L. Huang, H. Jiang, K. Huang, Solid State Sci. 13, 1261–1267 (2011)CrossRefGoogle Scholar
  22. 22.
    H.M. Pathan, J.D. Desai, C.D. Lokhande, Appl. Surf. Sci. 202, 47–56 (2002)CrossRefGoogle Scholar
  23. 23.
    S.D. Sartale, C.D. Lokhande, Mater. Chem. Phys. 65, 63–67 (2000)CrossRefGoogle Scholar
  24. 24.
    S. Thanikaikarasan, T. Mahalingam, A. Kathalingam, H. Moon, Y.D. Kim, J. New Mater. Electrochem. Syst. 13, 29–33 (2010)Google Scholar
  25. 25.
    M. Xin, K.W. Li, H. Wang, Appl. Surf. Sci. 256, 1436–1442 (2009)CrossRefGoogle Scholar
  26. 26.
    W.Y. Kim, B.M. Palve, H.M. Pathan, O.-S. Joo, Mater. Chem. Phys. 131, 525–528 (2011)CrossRefGoogle Scholar
  27. 27.
    L. Chen, W. Yu, Y. Li, Powder Technol. 191, 52–54 (2009)CrossRefGoogle Scholar
  28. 28.
    Y. Cui, G. Chen, J. Ren, J. Solid State Chem. 172, 17 (2003)CrossRefGoogle Scholar
  29. 29.
    B. Li, Y. Xie, J. Huang, Inorg. Chem. 39, 2061 (2000)CrossRefGoogle Scholar
  30. 30.
    C. Tan, Y. Zhu, R. Lu, Mater. Chem. Phys. 91, 44 (2005)CrossRefGoogle Scholar
  31. 31.
    P. Roy, S.K. Srivastava, Cryst. Growth Des. 6, 1921 (2006)CrossRefGoogle Scholar
  32. 32.
    F.E. Ghodsi, F.Z. Tepehan, G.G. Tepehan, Surf. Sci. 601, 4497 (2007)CrossRefGoogle Scholar
  33. 33.
    E. Guneri, A. Kariper, J. Alloys Compd. 516, 20 (2012)CrossRefGoogle Scholar
  34. 34.
    M.A. Mahadik, S.S. Shinde, Y.M. Hunge, V.S. Mohite, S.S. Kumbhar, A.V. Moholkar, K.Y. Rajpure, C.H. Bhosale, J. Alloys Compd. 611, 446 (2014)CrossRefGoogle Scholar
  35. 35.
    M.A. Butler, J. Appl. Phys. 48, 1914–1920 (1977)CrossRefGoogle Scholar
  36. 36.
    K.M. Gadave, C.D. Lokhande, Thin Solid Films 229, 1–4 (1993)CrossRefGoogle Scholar
  37. 37.
    S.D. Sartale, C.D. Lokhande, Mater. Chem. Phys. 65, 63–67 (2000)CrossRefGoogle Scholar
  38. 38.
    S. Erokhina, V. Erokhin, C. Nicolini, Langmuir 19, 766–771 (2003)CrossRefGoogle Scholar
  39. 39.
    S. Erokhina, V. Erokhin, C. Nicolini, Colloid Surf. A 198–200, 645–650 (2002)CrossRefGoogle Scholar
  40. 40.
    B. Minceva-Sukarova, M. Najdoski, I. Grozdanov, C.J. Chunnilall, J. Mol. Struct. 410, 267 (1997)Google Scholar
  41. 41.
    S.Y. Wang, W. Wang, Z.H. Lu, Mater. Sci. Eng. B 103, 184 (2003)CrossRefGoogle Scholar
  42. 42.
    M. Ishii, K. Shibata, H. Nozaki, J. Solid State Chem. 105, 504–511 (1993)CrossRefGoogle Scholar
  43. 43.
    A.G. Milekhin, N.A. Yeryukov, L.L. Sveshnikova, T.A. Duda, E.E. Rodyakina, V.A. Gridchin, E.S. Sheremet, D.R.T. Zahn, Beilstein J. Nanotechnol. 6, 749–754 (2015)CrossRefGoogle Scholar
  44. 44.
    M. Saranya, R. Ramachandran, E.J.J. Samuel, S.K. Jeong, A.N. Grac, Powder Technol. 279, 209–220 (2015)CrossRefGoogle Scholar
  45. 45.
    J. Liu, D. Xue, J. Mater. Chem. 21, 223 (2011)CrossRefGoogle Scholar
  46. 46.
    Y. Wu, C. Wadia, W.L. Ma, B. Sadtler, A.P. Alivisatos, Nano Lett. 8, 2551–2555 (2008)CrossRefGoogle Scholar
  47. 47.
    Y.P. Du, B. Xu, T. Fu, M. Cai, F. Li, Y. Zhang, Q.B. Wang, J. Am. Chem. Soc. 132, 1470–1471 (2010)CrossRefGoogle Scholar
  48. 48.
    G.M. Liu, T. Schulmeyer, J. Brotz, A. Klein, W. Jaegerman, Thin Solid Films 431, 477–482 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Balasaheb M. Palve
    • 1
    • 2
  • Sandesh R. Jadkar
    • 1
  • Habib M. Pathan
    • 1
  1. 1.Advanced Physics Laboratory, Department of PhysicsSavitribai Phule Pune UniversityPuneIndia
  2. 2.S.N. Arts, D.J.M. Commerce and B.N.S. Science College SangamnerDist-AhmednagarIndia

Personalised recommendations