Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 11, pp 11682–11690 | Cite as

Study of carbon/copper nanocomposite synthesized by sol–gel method

  • N. Ben MansourEmail author
  • L. El Mir


Organic–inorganic nanocomposite was obtained after the incorporation of cupric oxide (CuO) nanoparticles in a host matrix based on pyrogallol and formaldehyde (PF) using sol–gel method. The material was subjected to heat treatment under inert atmosphere at 650 °C during 2 h to obtained PF/Cu-650 nanocomposite. The X-ray diffraction analysis exhibited the presence of two phases: metallic copper Cu and graphite C. The voltage–current V(I) characteristics present a negative differential resistance at room temperature. The evolution of the conductivity as a function of measurement temperature indicates the dominance of the three dimensions Godet-variable range hopping transport model. The alternative current conductance was investigated using admittance spectroscopy; the obtained curves show the presence of hopping conduction mechanism. The Nyquist diagrams were used to identify an equivalent circuit and the fundamental parameters of the circuit are determined with the aim to study the contributions of the grains and grain boundaries to the conductivity.


Pyrolysis Temperature Metallic Copper Cupric Oxide Negative Differential Resistance Electrical Equivalent Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    G. Sandi, H. Joachin, R. Kizilel, S. Seifert, K.A. Carrado, Chem. Mater. 15, 838 (2003)CrossRefGoogle Scholar
  2. 2.
    M.K. Corbierre, N.S. Cameron, M. Sutton, S.G.J. Mochrie, L.B. Lurio, A. Ruehm et al., J. Am. Chem. Soc. 123, 10411 (2001)CrossRefGoogle Scholar
  3. 3.
    G. Sandi, R. Kizilel, K.A. Carrado, R. Fernandez-Saavedra, N. Castagnola, Electrochim. Acta 50, 3891 (2005)CrossRefGoogle Scholar
  4. 4.
    V. Yong, H.T. Hahn, Nanotechnology 15, 1338 (2004)CrossRefGoogle Scholar
  5. 5.
    W.J.E. Beek, M.M. Wienk, M. Kemerink, X. Yang, R.A.J. Janssen, J. Phys. Chem. B 109, 9505 (2005)CrossRefGoogle Scholar
  6. 6.
    S.F. Wang, F. Xie, R.F. Hu, Sens. Actuators B 123, 495 (2007)CrossRefGoogle Scholar
  7. 7.
    M. Zielinski, R. Wojcieszak, S. Monteverdi, M. Mercy, M.M. Bettahar, Int. J. Hydrogen Energy 32, 1024 (2007)CrossRefGoogle Scholar
  8. 8.
    N. Ben Mansour, I. Najeh, S. Mansouri, L. El Mir, Appl. Surf. Sci. 337, 158 (2015)CrossRefGoogle Scholar
  9. 9.
    N. Ben Mansour, L. El Mir, Appl. Surf. Sci. 308, 10 (2014)CrossRefGoogle Scholar
  10. 10.
    W. Djeridi, N. Ben Mansour, A. Ouederni, P.L. Llewellyn, L. El Mir, Int. J. Hydrogen Energy 40, 13690 (2015)CrossRefGoogle Scholar
  11. 11.
    M. Hjiri, R. Dahari, N. Ben Mansour, L. El Mir, M. Bonyani, A. Mirzaei, S.G. Leonardi, G. Neri, Mater. Lett. 160, 452 (2015)CrossRefGoogle Scholar
  12. 12.
    Z. Guo, X. Liang, T. Pereira, R. Scaffaro, H. Hahn, Compos. Sci. Technol. 67, 2036 (2007)CrossRefGoogle Scholar
  13. 13.
    H. Saeki, H. Tabata, T. Kawai, Solid State Commun. 120, 439 (2001)CrossRefGoogle Scholar
  14. 14.
    N. Ben Mansour, I. Najeh, M. Saadoun, B. Viallet, G.L. Gauffier, L. El Mir, Int. J. Nanoelectron. Mater. 3, 113 (2010)Google Scholar
  15. 15.
    Y.C. Li, R.K.Y. Li, S.C. Tjong, J. Nanomater. 2010, 10 (2009)Google Scholar
  16. 16.
    S.I. Aliev, G.M. Niftiev, F.I. Pliev, B.G. Tagiev, Sov. Phys. Semicond. 13, 340 (1979)Google Scholar
  17. 17.
    J.R. Rice, J. Appl. Mech. 55, 98 (1988)CrossRefGoogle Scholar
  18. 18.
    J.W. Hutchinson, Z. Suo, Adv. Appl. Mech. 29, 63 (1992)CrossRefGoogle Scholar
  19. 19.
    A.G. Evans, J.W. Hutchinson, Y. Wel, Acta Mater. 47, 4093 (1999)CrossRefGoogle Scholar
  20. 20.
    R. Maboudian, R.T. Howe, J. Vac. Sci. Technol. B15, 1 (1997)CrossRefGoogle Scholar
  21. 21.
    Y.P. Zhao, Arch. Appl. Mech. 72, 77 (2002)CrossRefGoogle Scholar
  22. 22.
    Y.P. Zhao, L.S. Wang, T.X. Yu, J. Adhesion Sci. Technol. 17, 519 (2003)CrossRefGoogle Scholar
  23. 23.
    B.I. Shklovskii, A.L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984)CrossRefGoogle Scholar
  24. 24.
    H. Bottger, V.V. Bryksin, Hopping Conduction in Solids (VCH Verlagsgesellschaft, Weinheim, 1985)Google Scholar
  25. 25.
    N.F. Mott, E.A. Davis, Electronic Processes in Non Crystalline Materials, vol. 157 (Clarendon, Oxford, 1979)Google Scholar
  26. 26.
    C. Godet, J.P. Kleider, J. Mater. Sci. Mater. Electron. 17, 413 (2006)CrossRefGoogle Scholar
  27. 27.
    C. Godet, J. Non-Cryst. Solids 299, 333 (2002)CrossRefGoogle Scholar
  28. 28.
    C. Godet, Phys. Stat. Solidi B 231, 499 (2002)CrossRefGoogle Scholar
  29. 29.
    H. Bottger, U.V. Bruskin, Hopping Conduction in Solids, vol. 41 (Verlag Academie, Berlin, 1985), p. 169Google Scholar
  30. 30.
    S. Summerfield, Philos. Mag. B 52, 9 (1985)CrossRefGoogle Scholar
  31. 31.
    I. Najeh, N. Ben Mansour, H. Dahman, A. Alyamani, L. El Mir, Phys. Chem. Solids 73, 707 (2012)CrossRefGoogle Scholar
  32. 32.
    A.K. Jonscher, Nature 276, 673 (1977)CrossRefGoogle Scholar
  33. 33.
    J.C. Dyre, T.B. Shroder, Rev. Mod. Phys. 72, 873 (2000)CrossRefGoogle Scholar
  34. 34.
    D.K. Pradhan, B.K. Samantary, R.N.P. Chaudhary, A.K. Thakur, Mater. Sci. Eng. B 116, 7 (2005)CrossRefGoogle Scholar
  35. 35.
    M. Nadeem, M.J. Akhtar, A.Y. Khan, Solid State Commun. 134, 431 (2005)CrossRefGoogle Scholar
  36. 36.
    D.O. Neill, R.M. Bowman, J.M. Gregg, Appl. Phys. Lett. 77, 1520 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhyMNE), Faculty of Sciences in GabesGabes UniversityGabèsTunisia
  2. 2.Department of Physics, College of SciencesAl Imam Mohammad Ibn Saud Islamic University (IMSIU)RiyadhSaudi Arabia

Personalised recommendations