Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 11, pp 11548–11555 | Cite as

Explore of warpage origination in WLP and processing influence factors by experiment and theoretical modeling

  • Heng Li
  • Gong Cheng
  • Gaowei Xu
  • Le Luo
Article

Abstract

Thick Cu films are widely used in wafer level packaging, and the stress evolution during subsequent thermal cycling as well as the induced wafer warpage may make a significant impact on product yielding and needs to be investigated. The stress evolution behavior of 5 μm thick as-electroplated Cu films during thermal cycling are in situ investigated by wafer warpage measurement. It is revealed by microstructure analyses that the grain growth during thermal cycling is ignorable in current work, but dramatic atomic diffusion has occurred, suggesting the deformation mechanism is dominated by diffusional creep. As the dominant diffusion mechanism differs at different temperatures, an equivalent diffusional energy that has a linearly correlation to temperature is proposed, and consequently a stress evolution model based on the equivalent diffusional energy is deduced. Compared with conventional work, the current model has fewer fitted parameters, and shows better agreement with the experiment results.

Keywords

Stress Evolution Diffusional Creep Diffusional Energy Film Stress Normal Stress Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work is supported by National Natural Science Foundation of China (Grant No. NSFC61574154) and Natural Science Foundation of Shanghai (No. 13ZR1447300).

References

  1. 1.
    K.N. Tu, J. Appl. Phys. 94, 5451 (2003)CrossRefGoogle Scholar
  2. 2.
    C. Witt, R. Rosenberg, G. Bonilla et al., in Stress-Induced Phenomena in Metallization, ed. by P.S. Ho, et al. (American Institute of Physics, Melville, 2009)Google Scholar
  3. 3.
    R. Mehta, S. Chugh, Z.H. Chen, Nano Lett. 15, 2024 (2015)CrossRefGoogle Scholar
  4. 4.
    M.D. Thouless, J. Gupta, J.M.E. Harper, J. Mater. Res. 8, 1845 (1993)CrossRefGoogle Scholar
  5. 5.
    E. Suhir, Appl. Mech. Rev. 62, 040801 (2009)CrossRefGoogle Scholar
  6. 6.
    E. Suhir, Microelectron. Reliab. 54, 972 (2014)CrossRefGoogle Scholar
  7. 7.
    E. Suhir, J. Mater Sci.-Mater. El 27, 4816 (2016)CrossRefGoogle Scholar
  8. 8.
    E. Suhir, R. Ghaffarian, J. Nicolics, J. Mater. Sci.-Mater. El 27, 570 (2016)CrossRefGoogle Scholar
  9. 9.
    R. Bruening, A. Sibley, T. Sharma et al., Thin Solid Films 565, 136 (2014)CrossRefGoogle Scholar
  10. 10.
    D.R. Economy, M.J. Cordill, E.A. Payzant et al., Mat. Sci. Eng. a-Struct. 648, 289 (2015)CrossRefGoogle Scholar
  11. 11.
    Y. Temiz, C. Guiducci, Y. Leblebici, IEEE T. Comp Pack Man 3, 1458 (2013)Google Scholar
  12. 12.
    C.E. Murray, J. Jordan-Sweet, E.T. Ryan et al., Appl. Phys. Lett. 101, 231906 (2012)CrossRefGoogle Scholar
  13. 13.
    C. Zhu, W. Ning, G. Xu et al., Mater. Sci. Semicond. Process. 27, 819 (2014)CrossRefGoogle Scholar
  14. 14.
    P.A. Flinn, J. Mater. Res. 6, 1498 (1991)CrossRefGoogle Scholar
  15. 15.
    D. Chocyk, A. Proszynski, G. Gladyszewski, Microelectron. Eng. 85, 2179 (2008)CrossRefGoogle Scholar
  16. 16.
    R. Huang, D. Gan, P.S. Ho, J. Appl. Phys. 97, 103532 (2005). doi: 10.1063/1.1904721 CrossRefGoogle Scholar
  17. 17.
    Y.L. Shen, U. Ramamurty, J. Appl. Phys. 93, 1806 (2003)CrossRefGoogle Scholar
  18. 18.
    J.R. Greer, D.C. Jang, X.W. Gu, JOM 64, 1241 (2012)CrossRefGoogle Scholar
  19. 19.
    S.J. Hwang, Y.C. Joo, J. Koike, Thin Solid Films 516, 7588 (2008)CrossRefGoogle Scholar
  20. 20.
    T.K. Bhandakkar, Y. Wei, H. Gao, Math. Mech. Solids 14, 179 (2009)CrossRefGoogle Scholar
  21. 21.
    S.-K. Ryu, T. Jiang, K.H. Lu et al., Appl. Phys. Lett. 100, 041901 (2012)CrossRefGoogle Scholar
  22. 22.
    C.S. Zhu, W.G. Ning, G.W. Xu et al., J. Electron. Mater. 43, 3255 (2014)CrossRefGoogle Scholar
  23. 23.
    S.R. Oh, K. Yao, C.L. Chow et al., Thin Solid Films 519, 1441 (2010)CrossRefGoogle Scholar
  24. 24.
    D.K. Shin, J.J. Lee, IEEE T Comp Pack Man 4, 248 (2014)Google Scholar
  25. 25.
    A.G. Evans, J.W. Hutchinson, Acta Metall. Mater. 43, 2507 (1995)CrossRefGoogle Scholar
  26. 26.
    G.G. Stoney, in Proceedings of the Royal Society of London Series A-Containing Papers of a Mathematical and Physical Character, vol. 82 (1909), p. 172Google Scholar
  27. 27.
    M.F. Doerner, W.D. Nix, Crit. Rev. Solid State 14, 225 (1988)CrossRefGoogle Scholar
  28. 28.
    D. Weiss, H. Gao, E. Arzt, Acta Mater. 49, 2395 (2001)CrossRefGoogle Scholar
  29. 29.
    D.W. Gan, P.S. Ho, R. Huang et al., J. Appl. Phys. 97, 103531 (2005). doi: 10.1063/1.1904720 CrossRefGoogle Scholar
  30. 30.
    S.J. Hwang, Y.C. Joo, J. Koike, Thin Films Stresses Mech. Prop. X 795, 205 (2004)CrossRefGoogle Scholar
  31. 31.
    S.P. Baker, R.M. Keller-Flaig, J.B. Shu, Acta Mater. 51, 3019 (2003)CrossRefGoogle Scholar
  32. 32.
    HJ Frost, MF Ashby, Deformation-Mechanisms Maps (Pergamon, Oxford, 1982)Google Scholar
  33. 33.
    D. Gupta, C.K. Hu, K.L. Lee, Defect Diffus. Forum 143, 1397 (1997)CrossRefGoogle Scholar
  34. 34.
    T. Surholt, C. Herzig, Acta Mater. 45, 3817 (1997)CrossRefGoogle Scholar
  35. 35.
    R.P.S. Thakur, R. Singh, Appl. Phys. Lett. 64, 327 (1994)CrossRefGoogle Scholar
  36. 36.
    P. Shewmon, The Minerals, Metals & Materials Society, Diffusion in Solids, 2nd edn (Retroactive Coverage, USA, 1989), p. 246Google Scholar
  37. 37.
    R.P. Vinci, E.M. Zielinski, J.C. Bravman, Thin Solid Films 262, 142 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information TechnologyChinese Academy of Sciences (CAS)ShanghaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations