Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 11, pp 11432–11438 | Cite as

Mixed ink of copper nanoparticles and copper formate complex with low sintering temperatures

  • Yan Li
  • Tianke Qi
  • Miao Chen
  • Fei Xiao


A kind of copper mixed ink with low sintering temperatures was developed. The mixed ink was composed of copper nanoparticles and copper formate 3-dimethylamino-1,2-propanediol (DMAPD) complex. TG-MS showed a two-step decomposition process of the mixed ink below 200 °C. The copper formate DMAPD complex decomposed to copper nanoparticles at about 140 °C. The freshly formed small copper nanoparticles dispersed around the large copper nanoparticles of the ink, and then sintered at relatively low temperatures to form connections between larger nanoparticles. The copper films were obtained by thermally sintering of the mixed ink films at different temperatures. The mixed ink with 38 wt% of copper formate complex gave a film with the lowest resistivity of 18 μΩ cm after sintering at 200 °C, which is less than one thirtieth of that of the film without copper formate complex at the same sintering temperature. The morphology analysis showed the dense copper films from the mixed ink, in contrast to the loose film from the organic decomposition ink made of copper formate complex.


Copper Nanoparticles Copper Film Copper Formate Electrical Conductive Adhesive Lactic Acid Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by the National Science and Technology Major Project of China (No. 2013ZX02505).

Supplementary material

10854_2016_5269_MOESM1_ESM.docx (268 kb)
Supplementary material 1 (DOCX 268 kb)


  1. 1.
    A. Kamyshny, S. Magdassi, Small 10, 3515 (2014)CrossRefGoogle Scholar
  2. 2.
    S.B. Walker, J.A. Lewis, J. Am. Chem. Soc. 134, 1419 (2012)CrossRefGoogle Scholar
  3. 3.
    P. Calvert, Chem. Mater. 13, 3299 (2001)CrossRefGoogle Scholar
  4. 4.
    Y. Kim, B. Lee, S. Yang, I. Byun, I. Jeong, S.M. Cho, Curr. Appl. Phys. 12, 473 (2012)CrossRefGoogle Scholar
  5. 5.
    A. Kamyshny, J. Steinke, S. Magdassi, Open Appl. Phys. J. 4, 19 (2011)CrossRefGoogle Scholar
  6. 6.
    W. Li, W. Li, J. Wei, J. Tan, M. Chen, Mater. Chem. Phys. 146, 82 (2014)CrossRefGoogle Scholar
  7. 7.
    Y. Zhang, P. Zhu, G. Li, T. Zhao, X. Fu, R. Sun, F. Zhou, C. Wong, ACS Appl. Mater. Interfaces 6, 560 (2014)CrossRefGoogle Scholar
  8. 8.
    N.R. Kim, K. Shin, I. Jung, M. Shin, H.M. Lee, J. Phys. Chem. C 118, 26324 (2014)CrossRefGoogle Scholar
  9. 9.
    C. Dong, H. Cai, X. Zhang, C. Cao, Phys. E 57, 12 (2014)CrossRefGoogle Scholar
  10. 10.
    S. Magdassi, M. Grouchko, A. Kamyshny, Materials 3, 4626 (2010)CrossRefGoogle Scholar
  11. 11.
    C.K. Kim, G.J. Lee, M.K. Lee, C.K. Rhee, Powder Technol. 263, 1 (2014)CrossRefGoogle Scholar
  12. 12.
    D. Deng, Y. Cheng, Y. Jin, T. Qi, F. Xiao, J. Mater. Chem. 22, 23989 (2012)CrossRefGoogle Scholar
  13. 13.
    W. Chen, D. Deng, Y. Cheng, F. Xiao, J. Electron. Mater. 44, 2479 (2015)CrossRefGoogle Scholar
  14. 14.
    Y. Farraj, M. Grouchko, S. Magdassi, Chem. Commun. 51, 1587 (2015)CrossRefGoogle Scholar
  15. 15.
    B. Lee, Y. Kim, S. Yang, I. Jeong, J. Moon, Curr. Appl. Phys. 9, 157 (2009)CrossRefGoogle Scholar
  16. 16.
    D. Shin, S. Woo, H. Yem, M. Cha, S. Cho, M. Kang, S. Jeong, Y. Kim, K. Kang, Y. Piao, ACS Appl. Mater. Interfaces 6, 3312 (2014)CrossRefGoogle Scholar
  17. 17.
    S.J. Kim, J. Lee, Y.H. Choi, D.H. Yeon, Y. Byun, Thin Solid Films 520, 2731 (2012)CrossRefGoogle Scholar
  18. 18.
    D.Y. Shin, M. Jung, S. Chun, J. Mater. Chem. 22, 11755 (2012)CrossRefGoogle Scholar
  19. 19.
    A. Yabuki, N. Arriffin, M. Yanase, Thin Solid Films 519, 6530 (2011)CrossRefGoogle Scholar
  20. 20.
    A. Yabuki, S. Tanaka, Mater. Res. Bull. 47, 4107 (2012)CrossRefGoogle Scholar
  21. 21.
    D. Deng, T. Qi, Y. Cheng, Y. Jin, F. Xiao, J. Mater. Sci. Mater. Electron. 25, 390 (2014)CrossRefGoogle Scholar
  22. 22.
    A. Yabuki, Y. Tachibana, I.W. Fathona, Mater. Chem. Phys. 148, 299 (2014)CrossRefGoogle Scholar
  23. 23.
    A. Keller, F. Korosy, Nature 162, 580 (1948)CrossRefGoogle Scholar
  24. 24.
    Y. Ji, Y. Liu, G. Huang, X. Shen, H. Xiao, S. Fu, ACS Appl. Mater. Interfaces 7, 8041 (2015)CrossRefGoogle Scholar
  25. 25.
    W. Yang, C. Liu, Z. Zhang, Y. Liu, S. Lie, J. Mater. Sci. Mater. Electron. 24, 5175 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Materials ScienceFudan UniversityShanghaiChina

Personalised recommendations