Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 11, pp 11331–11338 | Cite as

Synthesis and gas sensing properties of palladium-doped indium oxide microstructures for enhanced hydrogen detection

  • Lin Chen
  • Xiaoyan He
  • Yanfei Liang
  • Yongjiao Sun
  • Zhengting Zhao
  • Jie Hu
Article

Abstract

In this paper, the pure In2O3 and Pd-doped In2O3 (0.5, 1.0, 2.0 and 4.0 mol%) flower-like spherical microstructures have been synthesized by a hydrothermal method. The crystal structure and surface morphology of as-prepared samples were characterized by X-ray diffraction and scanning electron microscopy. The gas sensing experiments were carried out on all the as-prepared gas sensors to hydrogen gas, and the measured results demonstrated that the Pd-doped In2O3 gas sensors exhibit enhanced gas sensing performance under the optimal working temperature of 210 °C. Especially, the 1.0 mol% Pd-doped In2O3 sensor shows the highest response to 100 ppm hydrogen gas at 210 °C, which was almost two times higher than that of pure one. Furthermore, the 1.0 mol% Pd-doped In2O3 gas sensor also shows fast response/recovery time about 4 and 7 s, respectively. Finally, the gas sensing mechanism was also discussed on the pure and Pd-doped In2O3 gas sensors.

Keywords

In2O3 Ethyl Cellulose Indium Oxide Optimum Operating Temperature Facile Hydrothermal Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51205274), Shanxi Scholarship Council of China (Grant No. 2013-035), Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province ([2014]95), Shanxi Province Science Foundation for Youths (Grant No. 2013021017-2).

References

  1. 1.
    G. Korotcenkov, S.D. Han, J.R. Stetter, Review of electrochemical hydrogen sensors. Chem. Rev. 109, 1402–1433 (2009)CrossRefGoogle Scholar
  2. 2.
    X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, M. Clement, Hydrogen leak detection using an optical fibre sensor for aerospace applications. Sens. Actuators B Chem. 67, 57–67 (2000)CrossRefGoogle Scholar
  3. 3.
    M. Balat, Potential importance of hydrogen as a future solution to environmental and transportation problems. Int. J. Hydrogen Energy 33, 4013–4029 (2008)CrossRefGoogle Scholar
  4. 4.
    M. Sevilla, R. Mokaya, Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ. Sci. 7, 1250–1280 (2014)CrossRefGoogle Scholar
  5. 5.
    A. Yilanci, I. Dincer, H.K. Ozturk, A review on solar-hydrogen/fuel cell hybrid energy systems for stationary applications. Prog. Energy Combust. Sci. 35, 231–244 (2009)CrossRefGoogle Scholar
  6. 6.
    X.Q. Zeng, M.L. Latimer, Z.L. Xiao, S. Panuganti, U. Welp, W.K. Kwok, T. Xu, Hydrogen gas sensing with networks of ultra small palladium nanowires formed on filtration membranes. Nano Lett. 11, 262–268 (2010)CrossRefGoogle Scholar
  7. 7.
    M. Zhang, Z. Yuan, J. Song, C. Zheng, Improvement and mechanism for the fast response of a Pt/TiO2 gas sensor. Sens. Actuators B 148, 87–92 (2010)CrossRefGoogle Scholar
  8. 8.
    M. Sánchez, R. Guirado, M.E. Rincón, Multiwalled carbon nanotubes embedded in sol–gel derived TiO2 matrices and their use as room temperature gas sensors. J. Mater. Sci. Mater. Electron. 18, 1131–1136 (2007)CrossRefGoogle Scholar
  9. 9.
    A. Esfandiar, S. Ghasemi, A. Irajizad, O. Akhavan, M.R. Gholami, The decoration of TiO2/reduced graphene oxide by Pd and Pt nanoparticles for hydrogen gas sensing. Int. J. Hydrogen Energy 37, 15423–15432 (2012)CrossRefGoogle Scholar
  10. 10.
    X. Yin, C. Xu, S. Li, J. Lu, Q. Wang, Sensing properties of Au-loaded SnO2 sensor for H2 and CO detection. J. Mater. Sci. Mater. Electron. doi:  10.1007/s10854-015-3718-4
  11. 11.
    M. Li, W. Yan, H. Zhu, S. Xia, W. Hao, Z. Tang, Synthesis and gas sensing properties of biomorphic SnO2 derived from loofah sponge and eggshell membrane. J. Mater. Sci. Mater. Electron. 26, 9561–9570 (2015)CrossRefGoogle Scholar
  12. 12.
    X. Tian, K. Yu, X. Wang, L. Yang, J. Sun, Influence of ammonia sources on the gas sensing properties of the direct grown ZnO nanomaterials. J. Mater. Sci. Mater. Electron. 27, 4711–4722 (2016)CrossRefGoogle Scholar
  13. 13.
    J. Hu, F. Gao, S. Sang, P. Li, X. Deng, W. Zhang, Y. Chen, K. Lian, Optimization of Pd content in ZnO microstructures for high-performance gas detection. J. Mater. Sci. 50, 1935–1942 (2015)CrossRefGoogle Scholar
  14. 14.
    O. Lupan, G. Chai, L. Chow, Novel hydrogen gas sensor based on single ZnO nanorod. Microelectron. Eng. 85, 2220–2225 (2008)CrossRefGoogle Scholar
  15. 15.
    J. Hu, F. Gao, Z. Zhao, S. Sang, P. Li, W. Zhang, X. Zhou, Y. Chen, Synthesis and characterization of Cobalt-doped ZnO microstructures for methane gas sensing. Appl. Surf. Sci. 363, 181–188 (2016)CrossRefGoogle Scholar
  16. 16.
    Y. Sun, Z. Wei, W. Zhang, P. Li, K. Lian, J. Hu, Synthesis of brush-like ZnO nanowires and their enhanced gas-sensing properties. J. Mater. Sci. 51, 1428–1436 (2016)CrossRefGoogle Scholar
  17. 17.
    Y. Gui, J. Zhao, H. Wang, J. Tian, H. Zhang, Microwave-assisted gas–liquid interfacial synthesis of WO3 precursor and nano-WO3 for gas-sensing application. J. Mater. Sci. Mater. Electron. doi  10.1007/s10854-016-4584-4
  18. 18.
    S. Sekimoto, H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura, T. Shigemori, S. Takahashi, A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide. Sens. Actuators B 66, 142–145 (2000)CrossRefGoogle Scholar
  19. 19.
    S. Elouali, L.G. Bloor, R. Binions, I.P. Parkin, C.J. Carmalt, J.A. Darr, Gas sensing with nano-indium oxides (In2O3) prepared via continuous hydrothermal flow synthesis. Langmuir 28, 1879–1885 (2012)CrossRefGoogle Scholar
  20. 20.
    L. Xu, H. Song, B. Dong, Y. Wang, J. Chen, X. Bai, Preparation and bifunctional gas sensing properties of porous In2O3–CeO2 binary oxide nanotubes. lnorg. Chem. 49, 10590–10597 (2010)Google Scholar
  21. 21.
    Q. Lu, C. Wang, S. Liu, M. Ren, Continuous pearl-necklace-shaped In2O3 ceramic nanofibers: preparation, characterization and gas sensing properties. Mater. Trans. 52, 1206–1210 (2011)CrossRefGoogle Scholar
  22. 22.
    T.V. Belysheva, E.A. Kazachkov, E.E. Gutman, Gas sensing properties of In2O3 and Au-doped In2O3 films for detecting carbon monoxide in air. J. Anal. Chem. 56, 676–678 (2001)CrossRefGoogle Scholar
  23. 23.
    L. Liu, S. Li, X. Guo, L. Wang, L. Liu, X. Wang, The fabrication of In2O3 nanowire and nanotube by single nozzle electrospinning and their gas sensing property. J. Mater. Sci.: Mater. Electron. 27, 5153–5157 (2016)Google Scholar
  24. 24.
    L. Xu, B. Dong, Y. Wang, X. Bai, J. Chen, Q. Liu, H. Song, Porous In2O3: RE (RE) Gd, Tb, Dy, Ho, Er, Tm, Yb) nanotubes: electrospinning preparation and room gas-sensing properties. J. Phys. Chem. C 114, 9089–9095 (2010)Google Scholar
  25. 25.
    Y. Lü, W. Zhan, Y. He et al., MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties. ACS Appl. Mater. Interfaces 6, 4186–4195 (2014)CrossRefGoogle Scholar
  26. 26.
    C. Liangyuan, S. Bai, G. Zhou, D. Li, A. Chen, C. Liu, Synthesis of ZnO–SnO2 nanocomposites by microemulsion and sensing properties for NO2. Sens. Actuators B 134, 360–366 (2008)CrossRefGoogle Scholar
  27. 27.
    K. Suematsu, Y. Shin, Z. Hua et al., Nanoparticle cluster gas sensor: controlled clustering of SnO2 nanoparticles for highly sensitive toluene detection. ACS Appl. Mater. Interfaces 6, 5319–5326 (2014)CrossRefGoogle Scholar
  28. 28.
    A. Chen, X. Huang, Z. Tong, S. Bai, R. Luo, C. Liu, Preparation, characterization and gas-sensing properties of SnO2–In2O3 nanocomposite oxides. Sens. Actuators B 115, 316–321 (2006)CrossRefGoogle Scholar
  29. 29.
    S. Wang, B. Xiao, T. Yang, P. Wang, C. Xiao, Z. Li, R. Zhao, M. Zhang, Enhanced HCHO gas sensing properties by Agloaded sunflower-like In2O3 hierarchical nanostructures. J. Mater. Chem. A 2, 6598–6604 (2014)CrossRefGoogle Scholar
  30. 30.
    S. Kundu, P.K. Warran, S.M. Mursalin, M. Narjinary, Synergistic effect of Pd and Sb incorporation on ethanol vapour detection of La doped tin oxide sensor. J. Mater. Sci. Mater. Electron. 26, 9865–9872 (2015)CrossRefGoogle Scholar
  31. 31.
    Z.A. Ansari, S.G. Ansari, T. Ko, J. Oh, Effect of MoO3 doping and grain size on SnO2-enhancement of sensitivity and selectivity for CO and H2 gas sensing. Sens. Actuators B Chem 87, 105–114 (2002)CrossRefGoogle Scholar
  32. 32.
    J. Moon, H.P. Hedman, M. Kemell et al., Hydrogen sensor of Pd-decorated tubular TiO2 layer prepared by anodization with patterned electrodes on SiO2/Si substrate. Sens. Actuators B Chem. 222, 190–197 (2016)CrossRefGoogle Scholar
  33. 33.
    X. Wen, M. Wang, C. Wang, J. Jiang, Electroless plated SnO2–Pd–Au compositethin film for room temperature H2 detection. Electrochim. Acta 56, 6524–6529 (2011)CrossRefGoogle Scholar
  34. 34.
    C.-M. Chang, M.-H. Hon, I.-C. Leu, Outstanding H2 sensing performance of Pd nanoparticle-decorated ZnO nanorod arrays and the temperature-dependent sensing mechanisms. ACS Appl. Mater. Interfaces 5, 135–143 (2012)CrossRefGoogle Scholar
  35. 35.
    Y. Chang, J. Xu, Y. Zhang et al., Optical properties and photocatalytic performances of Pd modified ZnO samples. J. Phys. Chem. C 113, 18761–18767 (2009)CrossRefGoogle Scholar
  36. 36.
    L. Liu, T. Zhang, S. Li, L. Wang, Y. Tian, Preparation, characterization, and gas-sensing properties of Pd-doped In2O3 nanofibers. Mater. Lett. 63, 1975–1977 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology)Ministry of EducationTaiyuanChina
  2. 2.Mcro and Nano System Research Center, College of Information EngineeringTaiyuan University of TechnologyTaiyuanChina
  3. 3.Research Center on Advanced Materials Science and TechnologyTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations