Skip to main content
Log in

Synthesis and gas sensing properties of palladium-doped indium oxide microstructures for enhanced hydrogen detection

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, the pure In2O3 and Pd-doped In2O3 (0.5, 1.0, 2.0 and 4.0 mol%) flower-like spherical microstructures have been synthesized by a hydrothermal method. The crystal structure and surface morphology of as-prepared samples were characterized by X-ray diffraction and scanning electron microscopy. The gas sensing experiments were carried out on all the as-prepared gas sensors to hydrogen gas, and the measured results demonstrated that the Pd-doped In2O3 gas sensors exhibit enhanced gas sensing performance under the optimal working temperature of 210 °C. Especially, the 1.0 mol% Pd-doped In2O3 sensor shows the highest response to 100 ppm hydrogen gas at 210 °C, which was almost two times higher than that of pure one. Furthermore, the 1.0 mol% Pd-doped In2O3 gas sensor also shows fast response/recovery time about 4 and 7 s, respectively. Finally, the gas sensing mechanism was also discussed on the pure and Pd-doped In2O3 gas sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Korotcenkov, S.D. Han, J.R. Stetter, Review of electrochemical hydrogen sensors. Chem. Rev. 109, 1402–1433 (2009)

    Article  Google Scholar 

  2. X. Bevenot, A. Trouillet, C. Veillas, H. Gagnaire, M. Clement, Hydrogen leak detection using an optical fibre sensor for aerospace applications. Sens. Actuators B Chem. 67, 57–67 (2000)

    Article  Google Scholar 

  3. M. Balat, Potential importance of hydrogen as a future solution to environmental and transportation problems. Int. J. Hydrogen Energy 33, 4013–4029 (2008)

    Article  Google Scholar 

  4. M. Sevilla, R. Mokaya, Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ. Sci. 7, 1250–1280 (2014)

    Article  Google Scholar 

  5. A. Yilanci, I. Dincer, H.K. Ozturk, A review on solar-hydrogen/fuel cell hybrid energy systems for stationary applications. Prog. Energy Combust. Sci. 35, 231–244 (2009)

    Article  Google Scholar 

  6. X.Q. Zeng, M.L. Latimer, Z.L. Xiao, S. Panuganti, U. Welp, W.K. Kwok, T. Xu, Hydrogen gas sensing with networks of ultra small palladium nanowires formed on filtration membranes. Nano Lett. 11, 262–268 (2010)

    Article  Google Scholar 

  7. M. Zhang, Z. Yuan, J. Song, C. Zheng, Improvement and mechanism for the fast response of a Pt/TiO2 gas sensor. Sens. Actuators B 148, 87–92 (2010)

    Article  Google Scholar 

  8. M. Sánchez, R. Guirado, M.E. Rincón, Multiwalled carbon nanotubes embedded in sol–gel derived TiO2 matrices and their use as room temperature gas sensors. J. Mater. Sci. Mater. Electron. 18, 1131–1136 (2007)

    Article  Google Scholar 

  9. A. Esfandiar, S. Ghasemi, A. Irajizad, O. Akhavan, M.R. Gholami, The decoration of TiO2/reduced graphene oxide by Pd and Pt nanoparticles for hydrogen gas sensing. Int. J. Hydrogen Energy 37, 15423–15432 (2012)

    Article  Google Scholar 

  10. X. Yin, C. Xu, S. Li, J. Lu, Q. Wang, Sensing properties of Au-loaded SnO2 sensor for H2 and CO detection. J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-015-3718-4

  11. M. Li, W. Yan, H. Zhu, S. Xia, W. Hao, Z. Tang, Synthesis and gas sensing properties of biomorphic SnO2 derived from loofah sponge and eggshell membrane. J. Mater. Sci. Mater. Electron. 26, 9561–9570 (2015)

    Article  Google Scholar 

  12. X. Tian, K. Yu, X. Wang, L. Yang, J. Sun, Influence of ammonia sources on the gas sensing properties of the direct grown ZnO nanomaterials. J. Mater. Sci. Mater. Electron. 27, 4711–4722 (2016)

    Article  Google Scholar 

  13. J. Hu, F. Gao, S. Sang, P. Li, X. Deng, W. Zhang, Y. Chen, K. Lian, Optimization of Pd content in ZnO microstructures for high-performance gas detection. J. Mater. Sci. 50, 1935–1942 (2015)

    Article  Google Scholar 

  14. O. Lupan, G. Chai, L. Chow, Novel hydrogen gas sensor based on single ZnO nanorod. Microelectron. Eng. 85, 2220–2225 (2008)

    Article  Google Scholar 

  15. J. Hu, F. Gao, Z. Zhao, S. Sang, P. Li, W. Zhang, X. Zhou, Y. Chen, Synthesis and characterization of Cobalt-doped ZnO microstructures for methane gas sensing. Appl. Surf. Sci. 363, 181–188 (2016)

    Article  Google Scholar 

  16. Y. Sun, Z. Wei, W. Zhang, P. Li, K. Lian, J. Hu, Synthesis of brush-like ZnO nanowires and their enhanced gas-sensing properties. J. Mater. Sci. 51, 1428–1436 (2016)

    Article  Google Scholar 

  17. Y. Gui, J. Zhao, H. Wang, J. Tian, H. Zhang, Microwave-assisted gas–liquid interfacial synthesis of WO3 precursor and nano-WO3 for gas-sensing application. J. Mater. Sci. Mater. Electron. doi 10.1007/s10854-016-4584-4

  18. S. Sekimoto, H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura, T. Shigemori, S. Takahashi, A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide. Sens. Actuators B 66, 142–145 (2000)

    Article  Google Scholar 

  19. S. Elouali, L.G. Bloor, R. Binions, I.P. Parkin, C.J. Carmalt, J.A. Darr, Gas sensing with nano-indium oxides (In2O3) prepared via continuous hydrothermal flow synthesis. Langmuir 28, 1879–1885 (2012)

    Article  Google Scholar 

  20. L. Xu, H. Song, B. Dong, Y. Wang, J. Chen, X. Bai, Preparation and bifunctional gas sensing properties of porous In2O3–CeO2 binary oxide nanotubes. lnorg. Chem. 49, 10590–10597 (2010)

  21. Q. Lu, C. Wang, S. Liu, M. Ren, Continuous pearl-necklace-shaped In2O3 ceramic nanofibers: preparation, characterization and gas sensing properties. Mater. Trans. 52, 1206–1210 (2011)

    Article  Google Scholar 

  22. T.V. Belysheva, E.A. Kazachkov, E.E. Gutman, Gas sensing properties of In2O3 and Au-doped In2O3 films for detecting carbon monoxide in air. J. Anal. Chem. 56, 676–678 (2001)

    Article  Google Scholar 

  23. L. Liu, S. Li, X. Guo, L. Wang, L. Liu, X. Wang, The fabrication of In2O3 nanowire and nanotube by single nozzle electrospinning and their gas sensing property. J. Mater. Sci.: Mater. Electron. 27, 5153–5157 (2016)

    Google Scholar 

  24. L. Xu, B. Dong, Y. Wang, X. Bai, J. Chen, Q. Liu, H. Song, Porous In2O3: RE (RE) Gd, Tb, Dy, Ho, Er, Tm, Yb) nanotubes: electrospinning preparation and room gas-sensing properties. J. Phys. Chem. C 114, 9089–9095 (2010)

  25. Y. Lü, W. Zhan, Y. He et al., MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties. ACS Appl. Mater. Interfaces 6, 4186–4195 (2014)

    Article  Google Scholar 

  26. C. Liangyuan, S. Bai, G. Zhou, D. Li, A. Chen, C. Liu, Synthesis of ZnO–SnO2 nanocomposites by microemulsion and sensing properties for NO2. Sens. Actuators B 134, 360–366 (2008)

    Article  Google Scholar 

  27. K. Suematsu, Y. Shin, Z. Hua et al., Nanoparticle cluster gas sensor: controlled clustering of SnO2 nanoparticles for highly sensitive toluene detection. ACS Appl. Mater. Interfaces 6, 5319–5326 (2014)

    Article  Google Scholar 

  28. A. Chen, X. Huang, Z. Tong, S. Bai, R. Luo, C. Liu, Preparation, characterization and gas-sensing properties of SnO2–In2O3 nanocomposite oxides. Sens. Actuators B 115, 316–321 (2006)

    Article  Google Scholar 

  29. S. Wang, B. Xiao, T. Yang, P. Wang, C. Xiao, Z. Li, R. Zhao, M. Zhang, Enhanced HCHO gas sensing properties by Agloaded sunflower-like In2O3 hierarchical nanostructures. J. Mater. Chem. A 2, 6598–6604 (2014)

    Article  Google Scholar 

  30. S. Kundu, P.K. Warran, S.M. Mursalin, M. Narjinary, Synergistic effect of Pd and Sb incorporation on ethanol vapour detection of La doped tin oxide sensor. J. Mater. Sci. Mater. Electron. 26, 9865–9872 (2015)

    Article  Google Scholar 

  31. Z.A. Ansari, S.G. Ansari, T. Ko, J. Oh, Effect of MoO3 doping and grain size on SnO2-enhancement of sensitivity and selectivity for CO and H2 gas sensing. Sens. Actuators B Chem 87, 105–114 (2002)

    Article  Google Scholar 

  32. J. Moon, H.P. Hedman, M. Kemell et al., Hydrogen sensor of Pd-decorated tubular TiO2 layer prepared by anodization with patterned electrodes on SiO2/Si substrate. Sens. Actuators B Chem. 222, 190–197 (2016)

    Article  Google Scholar 

  33. X. Wen, M. Wang, C. Wang, J. Jiang, Electroless plated SnO2–Pd–Au compositethin film for room temperature H2 detection. Electrochim. Acta 56, 6524–6529 (2011)

    Article  Google Scholar 

  34. C.-M. Chang, M.-H. Hon, I.-C. Leu, Outstanding H2 sensing performance of Pd nanoparticle-decorated ZnO nanorod arrays and the temperature-dependent sensing mechanisms. ACS Appl. Mater. Interfaces 5, 135–143 (2012)

    Article  Google Scholar 

  35. Y. Chang, J. Xu, Y. Zhang et al., Optical properties and photocatalytic performances of Pd modified ZnO samples. J. Phys. Chem. C 113, 18761–18767 (2009)

    Article  Google Scholar 

  36. L. Liu, T. Zhang, S. Li, L. Wang, Y. Tian, Preparation, characterization, and gas-sensing properties of Pd-doped In2O3 nanofibers. Mater. Lett. 63, 1975–1977 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51205274), Shanxi Scholarship Council of China (Grant No. 2013-035), Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province ([2014]95), Shanxi Province Science Foundation for Youths (Grant No. 2013021017-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Chen or Jie Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., He, X., Liang, Y. et al. Synthesis and gas sensing properties of palladium-doped indium oxide microstructures for enhanced hydrogen detection. J Mater Sci: Mater Electron 27, 11331–11338 (2016). https://doi.org/10.1007/s10854-016-5257-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5257-z

Keywords

Navigation