Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 11, pp 11319–11324 | Cite as

Vertically aligned silicon nanowires with rough surface and its NO2 sensing properties

  • Yuxiang Qin
  • Yongyao Wang
  • Yi Liu


Vertically aligned array of silicon nanowires (SiNWs) with rough surface was demonstrated to be a promising material for high performance gas sensor applications. A two-step etching process, i.e. metal-induced chemical etching followed by the back-etching of KOH was developed to prepare the rough SiNWs array. The roughness of SiNWs effectively increases the active surface area as evidence that the measured BET specific area is ten times larger than that of the smooth nanowires without KOH etching. Meanwhile, the nanowire diameter and distribution density are also decrease due to KOH etching. The high active surface area and loose configuration of the rough SiNWs array are favorable for gas adsorption and rapid gas diffusion. As a result, the sensor based on the rough SiNWs array exhibits high response, good stability and satisfying response–recovery characteristics in detection of NO2 in ppb–ppm level at room temperature.


Silicon Nanowires SiNWs Array Nanowire Diameter High Active Surface Area Satisfying Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by the National Natural Science Foundation of China (Nos. 61574100, 61274074, 61271070).


  1. 1.
    B.R. Huang, Y.K. Yang, T.C. Lin, Sol. Energy Mater. Sol. Cells 98, 357–362 (2012)CrossRefGoogle Scholar
  2. 2.
    C. Li, G. Fang, S. Sheng, Physica E 30, 169–173 (2005)CrossRefGoogle Scholar
  3. 3.
    N. Shehada, G. Brönstrup, K. Funka, Nano Lett. 2015(15), 1288–1295 (2015)CrossRefGoogle Scholar
  4. 4.
    O. Gunawan, S. Guha, Sol. Energy Mater. Sol. Cells 93, 1388–1393 (2009)CrossRefGoogle Scholar
  5. 5.
    A.M. Morales, C.M. Lieber, Science 279, 208–211 (1998)CrossRefGoogle Scholar
  6. 6.
    C.M. Hsu, S.T. Connor, M.X. Tang, Appl. Phys. Lett. 93, 133109 (2008)CrossRefGoogle Scholar
  7. 7.
    H.J. In, C.R. Field, P.E. Pehrsson, Nanotechnology 22, 355501 (2011)CrossRefGoogle Scholar
  8. 8.
    Z.P. Huang, N. Geyer, P. Werner, J. de Boor, U. Gösele, Adv. Mater. 23, 285–308 (2011)CrossRefGoogle Scholar
  9. 9.
    X.J. Huang, Y.K. Choi, Sens. Actuators, B 122, 659–671 (2007)CrossRefGoogle Scholar
  10. 10.
    X. Zou, H. Fan, Y. Tian, M. Zhang, X. Yan, Dalton Trans. 44, 7811–7821 (2015)CrossRefGoogle Scholar
  11. 11.
    P. Li, H. Fan, Y. Cai, M. Xu, C. Long, M. Li, S. Lei, X. Zou, RSC Advances 4, 15161–15170 (2014)CrossRefGoogle Scholar
  12. 12.
    D. Meng, N.M. Shaalan, T. Yamazaki, T. Kikuta, Sens. Actuators, B 169, 113–120 (2012)CrossRefGoogle Scholar
  13. 13.
    Y. Qin, X. Li, F. Wang, M. Hu, J. Alloys Compd. 509, 8401–8406 (2011)CrossRefGoogle Scholar
  14. 14.
    B.R. Huang, Y.K. Yang, H.L. Cheng, Nanotechnology 24, 475502 (2013)CrossRefGoogle Scholar
  15. 15.
    Y. Qin, M. Hu, J. Zhang, Sens. Actuators, B 150, 339–345 (2010)CrossRefGoogle Scholar
  16. 16.
    T. Qiu, X.L. Wu, J.C. Shen, P.C.T. Ha, P.K. Chu, Nanotechnology 17, 5769–5772 (2006)CrossRefGoogle Scholar
  17. 17.
    K.Q. Peng, X. Wang, S.T. Lee, Appl. Phys. Lett. 95, 243112 (2009)CrossRefGoogle Scholar
  18. 18.
    S.S. Badadhe, I.S. Mulla, Sens. Actuators, B 143, 164–170 (2009)CrossRefGoogle Scholar
  19. 19.
    E. Rossinyol, A. Prim, E. Pellicer, J. Arbiol, F. Hernández-Ramírez, F. Peiró, A. Cornet, J.R. Morante, L.A. Solovyov, B. Tian, T. Bo, D. Zhao, Adv. Funct. Mater. 17, 1801–1806 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Electronics and Information EngineeringTianjin UniversityTianjinChina
  2. 2.Key Laboratory for Advanced Ceramics and Machining Technology, Ministry of Education, School of Materials Science and EngineeringTianjin UniversityTianjinChina

Personalised recommendations