Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 11, pp 11284–11292 | Cite as

A series of highly quantum efficiency PMMA luminescent films doped with Eu-complex as promising light-conversion molecular devices

  • Chaolong Yang
  • Hualin Zhou
  • Jing Xu
  • Youbing Li
  • Mangeng Lu
  • Jian He
  • Qiang Zhang


In this paper, a series of Eu/PMMA and Eu/PMMA/SiO2 luminescent films have been designed, fabricated and characterized. Thermo-gravimetric analysis and photo-luminescence results indicated the Eu-complex precursor was successfully immobilized in PMMA matrix through the interaction between the Eu-complex and the –C=O groups of the PMMA matrix. The emission spectra of the Eu-complex and Eu/PMMA films recorded at 25 °C exhibited the characteristic bands arising from the 5D0/7FJ. The fact that the quantum efficiencies (η) of the doped film increased significantly indicated that PMMA matrix acted as an efficient co-sensitizer for Eu3+ ions luminescent center, and therefore enhanced the η of the emitter 5D0 level. Especially, with the doping nano-SiO2 into Eu/PMMA-5 % system, the T d-5 % of Eu/PMMA/SiO2 has obviously improved. Due to the carrying effect of nano-SiO2 and interaction between –C=O of PMMA chain and Eu3+ ions, the η of Eu/PMMA/SiO2 films have been greatly enhanced. To the best of our knowledge, the η of Eu/PMMA/SiO2-3 % film (78.57 %) is found to be the highest so far reported in the literature. These Eu/PMMA/SiO2 luminescent films show excellent luminescent properties and therefore have potential applications in light-conversion molecular device.


PMMA Composite Film High Quantum Efficiency Pure PMMA Ancillary Ligand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is financially supported by the National Natural Science Foundation of China (No. 21404017), and the Chongqing Science and Technology Innovation Capacity Building Project (Project No. cstc2013kjrc-qnrc50003).

Supplementary material

10854_2016_5251_MOESM1_ESM.docx (283 kb)
Supplementary material 1 (DOCX 282 kb)


  1. 1.
    X.P. Li, G.B. Shen, X.T. Jin, M.Q. Liu, L.J. Shi, J.J. Lu, Novel polyimide containing 1,10-phenanthroline and its europium(III) complex: synthesis, characterization, and luminescence properties. J. Mater. Sci. 51, 2072–2078 (2016)CrossRefGoogle Scholar
  2. 2.
    Y. Tao, P.F. Yan, C. Wang, G.M. Li, Luminescent electrospun composite nanofibers of [Eu(TFI)3(Phen)]·CHCl3/polyvinylpyrrolidone. J. Mater. Sci. 48, 6682–6688 (2013)CrossRefGoogle Scholar
  3. 3.
    N. Sabbatini, M. Guardigli, J.-M. Lehn, Coord. Chem. Rev. 123, 201 (1993)CrossRefGoogle Scholar
  4. 4.
    I.T.S. Garciaa, P.V. Ribeirob, D.S. Corrêab, I.M.N. da Cunhab, N.L.V. Carreñob, E.C. Moreirac, F.S. Rodembuschd, Photoactive thin films of polycaprolactam doped with europium(III) complex using phenylalanine as ligand. Appl. Surf. Sci. 258, 1437–1442 (2011)CrossRefGoogle Scholar
  5. 5.
    S. Pandya, J. Yu, D. Parker, Engineering emissive europium and terbium complexes for molecular imaging and sensing. Dalton Trans. 23, 2757–2766 (2006)CrossRefGoogle Scholar
  6. 6.
    Y. Yang, J. Li, X. Liu, S. Zhang, K. Driesen, P. Nockemann, K. Binnemans, Listening to lanthanide complexes: determination of the intrinsic luminescence quantum yield by nonradiative relaxation. ChemPhysChem 9, 600–606 (2008)CrossRefGoogle Scholar
  7. 7.
    C.L. Yang, J.X. Luo, J.Y. Ma, M.G. Lu, L.Y. Liang, B.H. Tong, Synthesis and photoluminescent properties of four novel trinuclear europium complexes based on two tris-beta-diketones ligands. Dyes Pigment. 92, 696–704 (2011)CrossRefGoogle Scholar
  8. 8.
    C.L. Yang, J. Xu, J.Y. Ma, D.Y. Zhu, Y.F. Zhang, L.Y. Liang, M.G. Lu, The effect of two additional Eu3+ lumophors in two novel trinuclear europium complexes on their photoluminescent properties. Photochem. Photobiol. Sci. 12, 330–338 (2013)CrossRefGoogle Scholar
  9. 9.
    C.L. Yang, J. Xu, J.Y. Li, M.G. Lu, Y.B. Li, X.L. Wang, An efficiently colorimetric and luminescent probe of fluoride, acetate and phosphate ions based on a novel trinuclear Eu-complex. Sens. Actuators B Chem. 196, 133–139 (2014)CrossRefGoogle Scholar
  10. 10.
    C.L. Yang, J. Xu, J.Y. Ma, D.Y. Zhu, Y.F. Zhang, L.Y. Liang, M.G. Lu, An efficient long fluorescence lifetime polymer-based sensor based on europium complex as chromophore for the specific detection of F, CH3COO, and H2PO4 . Polym. Chem. 3, 2640–2648 (2012)CrossRefGoogle Scholar
  11. 11.
    L.D. Carlos, R.A.S. Ferreira, V. de Zea Bermudez, S.J.L. Ribeiro, Adv. Mater. 21, 509 (2009)CrossRefGoogle Scholar
  12. 12.
    K. Binnemans, Lanthanide-based luminescent hybrid materials. Chem. Rev. 109, 4283–4374 (2009)CrossRefGoogle Scholar
  13. 13.
    S.V. Eliseeva, J.-C.G. Bünzli, Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 39, 189–227 (2010)CrossRefGoogle Scholar
  14. 14.
    J. Kang, M.C.F.C. Felinto, L.A.O. Nunes, O.L. Malta, H.F. Brito, Intermolecular energy transfer and photostability of luminescence-tuneable multicolour PMMA films doped with lanthanide–β-diketonate complexes. J. Mater. Chem. 21, 3796 (2011)CrossRefGoogle Scholar
  15. 15.
    C.L. Yang, J. Xu, R. Zhang, Y.F. Zhang, Z.X. Li, Y.W. Li, L.Y. Liang, M.G. Lu, An efficient Eu-based anion-selective chemosensor: synthesis, sensing properties, and its use for the fabrication of luminescent hydrogel probe. Sens. Actuators B: Chem. 177, 437–444 (2013)CrossRefGoogle Scholar
  16. 16.
    C.L. Yang, S.J. Liu, J. Xu, Y.B. Li, M.Y. Shang, L. Lei, G.X. Wang, J. He, X.L. Wang, M.G. Lu, Efficient red emission from poly(vinyl butyral) films doped with a novel europium complex based on a terpyridyl ancillary ligand: synthesis, structural elucidation by Sparkle/RM1 calculation, and photophysical properties. Polym. Chem. 7, 1147–1157 (2016)CrossRefGoogle Scholar
  17. 17.
    C.L. Yang, J. Xu, Y.F. Zhang, Y.W. Li, J. Zheng, L.Y. Liang, M.G. Lu, Efficient monochromatic red-light-emitting PLEDs based on a series of nonconjugated Eu-polymers containing a neutral terpyridyl ligand. J. Mater. Chem. C 1, 4885–4901 (2013)CrossRefGoogle Scholar
  18. 18.
    Z.L. Xie, H.B. Xu, A. Geßner, M.U. Kumke, M. Priebe, K.M. Fromm, A. Taubert, A transparent, flexible, ion conductive, and luminescent PMMA ionogel based on a Pt/Eu bimetallic complex and the ionic liquid [Bmim][N(Tf)2]. J. Mater. Chem. 22, 8110–8116 (2012)CrossRefGoogle Scholar
  19. 19.
    D.F. Parra, P.L. Forster, R. Lyszczek, A. Qstasz, A.B. Lugao, Z. Rzaczynska, Thermal behavior of the highly luminescent poly (3-hydroxybutyrate): Eu(tta)3 (H2O)2 red-emissive complex. J. Therm. Anal. Calorim. 114, 1049–1056 (2013)CrossRefGoogle Scholar
  20. 20.
    Y.X. Wang, J.G. Tang, L.J. Huang, Y. Wang, Z. Huang, J.X. Liu, Q.S. Xu, W.F. Shen, L.B. Belfirore, Enhanced emission of nanoSiO2-carried Eu3+ complexes and highly luminescent hybrid nanofibers. Opt. Mater. 35, 1395–1403 (2013)CrossRefGoogle Scholar
  21. 21.
    Y.Y. Yu, W.C. Chien, S.Y. Chen, Hybrid thin films derived from poly(acrylic)/colloidal silica/lanthanide metal complex. J. Nanosci. Nanotechnol. 9, 4040–4047 (2009)CrossRefGoogle Scholar
  22. 22.
    F.F.A. Jesus, S.T.S. Santos, J.M.A. Caiut, V.H.V. Sarmento, Effects of thermal treatment on the structure and luminescent properties of Eu3+ doped SiO2–PMMA hybrid nanocomposites prepared by a sol–gel process. J. Lumin. 170, 588–593 (2016)CrossRefGoogle Scholar
  23. 23.
    W.C. Chien, Y.Y. Yu, S.Y. Chen, C.C. Yang, Preparation of poly(acrylic)/SiO2/EuL3·2H2O Hybrid thin films from monodispersed colloidal silica. J. Nanosci. Nanotechnol. 8, 5364–5368 (2010)CrossRefGoogle Scholar
  24. 24.
    D.F. Parra, A. Mucciolo, H.F. Brito, L.C. Thompson, Optical characteristics of the Eu3+–β-diketonate complex doped into epoxy resin. J. Solid State Chem. 171, 412–419 (2003)CrossRefGoogle Scholar
  25. 25.
    J. Kai, D.F. Parra, H.F. Brito, Polymer matrix sensitizing effect on photoluminescence properties of Eu3+–β-diketonate complex doped into poly-β-hydroxybutyrate (PHB) in film form. J. Mater. Chem. 18, 4549–4554 (2008)CrossRefGoogle Scholar
  26. 26.
    H. Zhang, H. Song, B. Dong, L. Han, G. Pan, X. Bai, L. Fan, S. Lu, H. Zhao, F. Wang, Electrospinning preparation and luminescence properties of europium complex/polymer composite fibers. J. Phys. Chem. C 112, 9155–9162 (2008)CrossRefGoogle Scholar
  27. 27.
    A. Beeby, I.M. Clarkson, R.S. Dickins, S. Faulkner, D. Parker, L. Royle, A.S. Sousa, J.A.G. Williams, M. Woods, Non-radiative deactivation of the excited states of europium, terbium and ytterbium complexes by proximate energy-matched OH, NH and CH oscillators: an improved luminescence method for establishing solution hydration states. J. Chem. Soc. Perkin. Trans. 2, 493–504 (1999)CrossRefGoogle Scholar
  28. 28.
    G.M. Davies, R.J. Aarons, G.R. Motson, J.C. Jeffery, H. Adams, S. Faulkner, M.D. Ward, Structural and near-IR photophysical studies on ternary lanthanide complexes containing poly (pyrazolyl) borate and 1, 3-diketonate ligands. Dalton Trans. 8, 1136–1144 (2004)CrossRefGoogle Scholar
  29. 29.
    C. Görller-Walrand, L. Fluyt, A. Ceulemans, W.T. Carnall, Magnetic dipole transitions as standards for Judd–Ofelt parametrization in lanthanide spectra. J. Chem. Phys. 95, 3099–3106 (1991)CrossRefGoogle Scholar
  30. 30.
    A. Balamurugan, M.L.P. Reddy, M. Jayakanna, Single polymer photosensitizer for Tb3+ and Eu3+ Ions: an approach for white light emission based on carboxylic-functionalized poly (m-phenylenevinylene)s. J. Phys. Chem. B 113, 14128–14138 (2009)CrossRefGoogle Scholar
  31. 31.
    O. Moudam, B.C. Rowan, M. Alamiry, P. Richardosn, B.S. Richards, A.C. Jones, N. Robertson, Europium complexes with high total photoluminescence quantum yields in solution and in PMMA. Chem. Commun. 43, 6649–6651 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Chaolong Yang
    • 1
    • 2
  • Hualin Zhou
    • 1
  • Jing Xu
    • 3
  • Youbing Li
    • 1
  • Mangeng Lu
    • 2
  • Jian He
    • 1
  • Qiang Zhang
    • 1
  1. 1.School of Materials Science and EngineeringChongqing University of TechnologyChongqingChina
  2. 2.Key Laboratory of Polymer Materials for Electronics, Guangzhou Institute of ChemistryChinese Academy of SciencesGuangzhouChina
  3. 3.Department of Chemistry, Graduate School of ScienceTohoku UniversitySendaiJapan

Personalised recommendations