Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 11, pp 11273–11283 | Cite as

Harsh service environment effects on the microstructure and mechanical properties of Sn–Ag–Cu-1 wt% nano-Al solder alloy



This paper investigates the electrical and mechanical performances of eutectic Sn-3Ag-0.5Cu (wt%) solder with the addition of Al nanoparticles. The study revealed that the elastic moduli, electrical resistivity and damping properties of such solder alloy were improved. Further, interfacial reaction phenomena on Au/Ni-plated Cu pad ball grid array substrate during isothermal aging and thermal cycle was evaluated in terms of the formation and growth kinetics of intermetallic compound (IMC) layer. A structural analysis confirmed that at their interfaces a ternary (Cu, Ni)-Sn IMC layer was adhered at the substrate surface. The thickness of this IMC layer was increased with increasing the duration of the isothermal aging and thermal cycle without any defects. In addition, the formation of Ag3Sn, Cu6Sn5, Sn–Al–Ag and AuSn4 IMC phases were evenly distributed in the solder matrix which acts as the second phase reinforcement. The measured shear strength and microhardness indicated that the exposure of the solder joints to the thermal cycles make the joints degraded faster than the situation in isothermal aging.


Shear Strength Solder Joint Solder Alloy Composite Solder Isothermal Aging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the financial support provided by The University of New South Wales (UNSW) for the project InfoEd Ref: RG124326. The authors would like to thank EPA centre staff for using the facility to do the experiment. The authors would also like to thank Mr. Tit Wah Chan, Department of Physics and Materials Science, CityU, for helping the damping property measurement.


  1. 1.
    Z.X. Li, M. Gupta, Adv. Eng. Mater. 7(11), 1049 (2005)CrossRefGoogle Scholar
  2. 2.
    Y.D. Han, S.M.L. Nai, H.Y. Jing, L.Y. Xu, C.M. Tan, J. Wei, J. Mater. Sci. Mater. Electron. 22, 315 (2011)CrossRefGoogle Scholar
  3. 3.
    F.J. Wang, Z.S. Yu, K. Qi, J. Alloys Compd. 438, 110 (2007)CrossRefGoogle Scholar
  4. 4.
    A.K. Gain, Y.C. Chan, W.K.C. Yung, Mater. Sci. Eng. B 162, 92 (2009)CrossRefGoogle Scholar
  5. 5.
    Y. Plevachuk, W. Hoyer, I. Kaban, M. Kohler, R. Novakovic, J. Mater. Sci. 45, 2051 (2010)CrossRefGoogle Scholar
  6. 6.
    F. Gnecco, E. Ricci, S. Amore, D. Giuranno, G. Borzone, G. Zanicchi, R. Novakovic, Int. J. Adhes. Adhes. 27, 409 (2007)CrossRefGoogle Scholar
  7. 7.
    A.K. Gain, L. Zhang, J. Mater. Sci. Mater. Electron. 27, 3982 (2016)CrossRefGoogle Scholar
  8. 8.
    H.R. Kotadia, P.D. Howes, S.H. Mannan, Microelectron. Reliab. 54, 1253 (2014)CrossRefGoogle Scholar
  9. 9.
    K. Suganuma, Curr. Opin. Solid State Mater. Sci. 5, 55 (2001)CrossRefGoogle Scholar
  10. 10.
    W.M. Xiao, Y.W. Shi, G.C. Xu, R. Ren, F. Guo, Z.D. Xia, Y.P. Lei, J. Alloys Compd. 472, 198 (2009)CrossRefGoogle Scholar
  11. 11.
    A.K. Gain, Y.C. Chan, W.K.C. Yung, Microelectron. Reliab. 51, 2306 (2011)CrossRefGoogle Scholar
  12. 12.
    Y.C. Chan, D. Yang, Prog. Mater Sci. 55, 428 (2010)CrossRefGoogle Scholar
  13. 13.
    H.Y. Hsiao, C. Chen, Appl. Phys. Lett. 94, 092107 (2009)CrossRefGoogle Scholar
  14. 14.
    M.F. Abdulhamid, C. Basaran, J. Electron. Packag. 131, 1 (2009)CrossRefGoogle Scholar
  15. 15.
    T.T. Bao, Y. Kim, J. Lee, J.-G. Lee, Mater. Trans. 51(12), 2145 (2010)CrossRefGoogle Scholar
  16. 16.
    F. Frongia, M. Pilloni, A. Scano, A. Ardu, C. Cannas, A. Musinu, G. Borzone, S. Delsante, R. Novakovic, G. Ennas, J. Alloys Compd. 623, 7 (2015)CrossRefGoogle Scholar
  17. 17.
    A. Roshanghias, J. Vrestal, A. Yakymovych, K.W. Richter, H. Ipser, CALPHAD 49, 101 (2015)CrossRefGoogle Scholar
  18. 18.
    J. Shen, Y.C. Chan, Microelectron. Reliab. 49, 223 (2009)CrossRefGoogle Scholar
  19. 19.
    L. Zhang, K.N. Tu, Mater. Sci. Eng. R 82, 1 (2014)CrossRefGoogle Scholar
  20. 20.
    A.K. Gain, T. Fouzder, Y.C. Chan, W.K.C. Yung, J. Alloys Compd. 509, 3319 (2011)CrossRefGoogle Scholar
  21. 21.
    K. Kanlayasiri, T. Ariga, Mater. Des. 86, 371 (2015)Google Scholar
  22. 22.
    A.K. Gain, L. Zhang, Y.C. Chan, J. Mater. Sci. Mater. Electron. 26, 7039 (2015)CrossRefGoogle Scholar
  23. 23.
    Y. Tang, G.Y. Li, Y.C. Pan, J. Alloys Compd. 554, 195 (2013)CrossRefGoogle Scholar
  24. 24.
    A.K. Gain, Y.C. Chan, Intermetallics 29, 48 (2012)CrossRefGoogle Scholar
  25. 25.
    S.K. Das, A. Sharif, Y.C. Chan, N.B. Wong, W.K.C. Yung, J. Alloys Compd. 481, 167 (2009)CrossRefGoogle Scholar
  26. 26.
    R. Mahmudi, S. Alibabaie, Mater. Sci. Eng. A 559, 421 (2013)CrossRefGoogle Scholar
  27. 27.
    S. Alibabaie, R. Mahmudi, Mater. Des. 39, 397 (2012)CrossRefGoogle Scholar
  28. 28.
    A.K. Gain, T. Fouzder, Y.C. Chan, A. Sharif, N.B. Wong, W.K.C. Yung, J. Alloys Compd. 506, 216 (2010)CrossRefGoogle Scholar
  29. 29.
    N. Chawla, Inter. Mater. Rev. 54(6), 368 (2009)CrossRefGoogle Scholar
  30. 30.
    S.L. Tay, A.S.M.A. Haseeb, M.R. Johan, P.R. Munroe, M.Z. Quadir, Intermetallics 33, 8 (2013)CrossRefGoogle Scholar
  31. 31.
    A.A. El-Daly, F. El-Tantawy, A.E. Hammad, M.S. Gaafar, E.H. El-Mossalamy, A.A. Al-ghamdi, J. Alloys Compd. 509, 7238 (2011)CrossRefGoogle Scholar
  32. 32.
    N.A.A.M. Amin, D.A. Shnawah, S.M. Said, M.F.M. Sabri, H. Arof, J. Alloys Compd. 599, 114 (2014)CrossRefGoogle Scholar
  33. 33.
    W.D. Callister Jr., D.G. Rethwisch, Materials Science and Engineering: an Introduction, 9th edn. (Willey, Singapore, 2013)Google Scholar
  34. 34.
    P. Babaghorbani, S.M.L. Nai, M. Gupta, J. Alloys Compd. 478, 458 (2009)CrossRefGoogle Scholar
  35. 35.
    S.H. Chang, S.K. Wu, Scripta Mater. 63, 957 (2010)CrossRefGoogle Scholar
  36. 36.
    Y. Sutou, T. Omori, N. Koeda, R. Kainuma, K. Ishida, Mater. Sci. Eng. A 438–440, 743 (2006)CrossRefGoogle Scholar
  37. 37.
    J. Zhang, R.J. Perez, E.J. Lavernia, J. Mater. Sci. 28, 2395 (1993)CrossRefGoogle Scholar
  38. 38.
    T. Laurila, V. Vuorinen, J.K. Kivilahti, Mat. Sci. Eng. R 49(1–2), 1 (2005)CrossRefGoogle Scholar
  39. 39.
    J.W. Yoon, S.W. Kim, S.B. Jung, J. Alloys Compd. 392, 247 (2005)CrossRefGoogle Scholar
  40. 40.
    A.K. Gain, L. Zhang, J. Mater. Sci. Mater. Electron. 27, 7524 (2016)CrossRefGoogle Scholar
  41. 41.
    K.N. Tu, T.Y. Lee, J.W. Jang, L. Li, D.R. Frear, K. Zeng, J.K. Kivilahti, J. Appl. Phys. 89, 4843 (2001)CrossRefGoogle Scholar
  42. 42.
    A.K. Gain, Y.C. Chan, Microelectron. Reliab. 54, 945 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Laboratory for Precision and Nano Processing Technologies, School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyAustralia

Personalised recommendations