Effect of NdAlO3 on microstructure, dielectric properties and temperature-stable mechanism of (Sr, Ca, Nd)TiO3 ceramics at microwave frequency

  • Jingjing Qu
  • Delong Huang
  • Xing Wei
  • Fei Liu
  • Changlai Yuan
  • Bailin Qin


Microwave dielectric ceramics (1 − x)(Sr0.3Ca0.427Nd0.182)TiO3xNdAlO3 (abbreviated as SCNTAx hereafter, 0.1 ≤ x ≤ 0.4) were prepared by conventional mixed oxide route, and their phase composition, microstructure and microwave dielectric properties were investigated as a function of the x value and sintering temperatures. A single tilted orthorhombic perovskite structure in space group Pnma was refined in the studied composition range. For microware dielectric properties, the decreasing relative permittivity was strongly affected by the ionic polarizability of Nd3+ and Al3+ in SCNTAx ceramic systems. Also, the quality factor of SCNTAx solid solution had strongly depended on apparent densities and average grain sizes. As expected, the promising ceramic of SCNTAx (x = 0.25) sintered at 1520 °C for 4 h was found to possess good microwave dielectric properties: a relative permittivity (ε r) of 55.6, a quality factor (Q × f) of 25,600 GHz (at 4.249 GHz) and a temperature coefficient of resonant frequency (τ f ) of 6.7 ppm/°C. Especially, the τ f values of SCNTAx ceramics were not strongly depended on tolerance factor (t) with increasing of the NdAlO3 content, while these τ f values were essentially correlated with the B-site bond valence and octahedral tilting. Wherein, either decreasing the B-site bond valence or increasing the octahedral tiltings (θ and φ) led to a decrease in τ f value for the present ceramics.


Bond Valence Microwave Dielectric Property Tolerance Factor Increase Sinter Temperature Ceramic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial supports of the National Natural Science Foundation of China (Grant No. 11464006), the Natural Science Foundation of Guangxi (Grant No. 2014GXNSFBA118254).


  1. 1.
    F. Liang, M. Ni, W.Z. Lu et al., Crystal structure and microwave dielectric properties of CaTiO3–La[Ga(1−δ)Alδ]O3 ceramics system. Mater. Res. Bull. 57, 140–145 (2014)CrossRefGoogle Scholar
  2. 2.
    P.L. Wise, I.M. Reaney, W.E. Lee et al., Structure microwave property relations in (SrxCa1–x)n+1TinO3n+1. J. Eur. Ceram. Soc. 21, 1723–1726 (2001)CrossRefGoogle Scholar
  3. 3.
    I.S. Kim, W.H. Jung, Y. Inaguma et al., Dielectric properties of A site deficient perovskite type lanthanum-calcium-titanium oxide solid solution system (1 − x)La2/3TiO3–xCaTiO3 (0.1 ≤ x ≤ 0.96). Mater. Res. Bull. 30, 307–316 (1995)CrossRefGoogle Scholar
  4. 4.
    M.S. Fu, X.Q. Liu, X.M. Chen, Structure and microwave dielectric characteristics of Ca1−xNd2x/3TiO3 ceramics. J. Eur. Ceram. Soc. 28, 585–590 (2008)CrossRefGoogle Scholar
  5. 5.
    W.S. Kim, E.S. Kim, K.H. Yoon, Effects of Sm3+ substitution on dielectric properties of Ca1−xSm2x/3TiO3 ceramics at microwave frequencies. J. Am. Ceram. Soc. 82, 2111–2115 (1999)CrossRefGoogle Scholar
  6. 6.
    M.H. Kim, S. Nahm, C.H. Choi et al., Dielectric properties of (1 − x)NdGaO3xCaTiO3 solid solution at microwave frequencies. Jpn. J. Appl. Phys. 41, 717–721 (2002)CrossRefGoogle Scholar
  7. 7.
    H.X. Yuan, X.M. Chen, M.M. Mao, Structure and microwave dielectric characteristics of Ca1+xNd1−xAl1−xTixO4 ceramics. J. Am. Ceram. Soc. 92(10), 2286–2290 (2009)CrossRefGoogle Scholar
  8. 8.
    D.D. Khalyavin, A.N. Salak, A.M.R. Senos et al., Ferreira Structure sequence in the CaTiO3–LaAlO3 microwave ceramics-revised. J. Am. Ceram. Soc. 89(5), 1721–1723 (2006)CrossRefGoogle Scholar
  9. 9.
    R.C. Kell, A.C. Greenham, G.C.E. Olds, High-permittivity temperature-stable ceramic dielectrics with low microwave loss. J. Am. Ceram. Soc. 56(7), 352–354 (1974)CrossRefGoogle Scholar
  10. 10.
    C.J. Howard, G.R. Lumpkin, R.I. Smith et al., Crystal structures and phase transition in the system SrTiO3–La2/3TiO3. J. Solid. State. Chem. 177, 2726–2732 (2004)CrossRefGoogle Scholar
  11. 11.
    C.L. Huang, K.H. Chiang, Dielectric properties of B2O3 doped (1–x)LaAlO3–xSrTiO3 ceramic system at microwave frequency range. Mater. Res. Bull. 37, 1941–1948 (2002)CrossRefGoogle Scholar
  12. 12.
    F. Liu, C.L. Yuan, X.Y. Liu et al., Microstructures and dielectric properties of (1 − x)SrTiO3xCa0.61Nd0.26TiO3 ceramic system at microwave frequencies. J. Mater. Sci.: Mater. Electron. 26(1), 128–133 (2015)Google Scholar
  13. 13.
    S.Y. Cho, I.T. Kim, K.S. Hong, Microwave dielectric properties and applications of rare earth aluminates. J. Mater. Res. 14, 114–119 (1999)CrossRefGoogle Scholar
  14. 14.
    B. Hakki, P. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE Trans. Microwave Theory Tech. MTT 8, 402–410 (1960)CrossRefGoogle Scholar
  15. 15.
    W. Courtney, Analysis and evaluation of a method of measuring complex permittivity and permeability of microwave materials. IEEE Trans. Microwave Theory Tech. MTT 18, 476–485 (1970)CrossRefGoogle Scholar
  16. 16.
    T. Nishikawa, K. Wakino, H. Tamura et al., Precise measurement method for temperature coefficient of microwave dielectric resonator material. IEEE MTT-S Int. Microwave Symp. Dig. 3, 277–280 (1987)Google Scholar
  17. 17.
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Cryst. A 32, 751–767 (1976)CrossRefGoogle Scholar
  18. 18.
    M. Reaney, E.L. Colla, N. Setter, Dielectric and structural characteristics of Ba and Sr based complex perovskites as a function of tolerance factor. Jpn. J. Appl. Phys. 33, 3984–3990 (1994)CrossRefGoogle Scholar
  19. 19.
    I.M. Reaney, R. Ubic, Dielectric and structural characteristics of perovskites and related materials as a function of tolerance factor. Ferroelectrics 228, 23–38 (1999)CrossRefGoogle Scholar
  20. 20.
    A.M. Glazer, The classification of tilted octahedral perovskites. Acta. Cryst. B28, 3384–3392 (1972)CrossRefGoogle Scholar
  21. 21.
    A.M. Glazer, Simple ways of determining perovskite structures. Acta. Cryst. A31, 756–762 (1975)CrossRefGoogle Scholar
  22. 22.
    L.A. Khalam, M.T. Sebastian, Microwave dielectric properties of Sr(B′1/2Nb1/2)O3 [B′ = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Er, Yb and In] ceramics. Int. J. Appl. Ceram. Tech. 3, 364–374 (2006)CrossRefGoogle Scholar
  23. 23.
    L.A. Khalam, M.T. Sebastian, Low loss dielectrics in the Ca(B′1/2B″1/2)O3 [B′ = lanthanides, y] system. J. Am. Ceram. Soc. 90, 1467–1474 (2007)CrossRefGoogle Scholar
  24. 24.
    W.R. Yang, C.C. Pan, C.L. Huang, Influence of Mg substitutions for Zn on the phase relation and microwave dielectric properties of (Zn1−xMgx)3Nb2O8 (x = 0.02–1.0) system. J. Alloys. Comp. 581, 257–262 (2013)CrossRefGoogle Scholar
  25. 25.
    E.S. Kim, B.S. Chun, D.W. Yoo et al., Microwave dielectric properties of (1 − x)(Ca0.7Nd0.2)TiO3x(Li0.5Nd0.5)TiO3 ceramics. Mater. Sci. Eng. B 99, 247–251 (2003)CrossRefGoogle Scholar
  26. 26.
    J. Qu, C. Yuan, F. Liu et al., Microstructures and microwave dielectric properties of (1−x)Sr0.2Na0.4Sm0.4TiO3xLnAlO3 (Ln = Nd, Pr and Sm) ceramic systems. J. Mater. Sci.: Mater. Electron. 26(7), 4862–4869 (2015)Google Scholar
  27. 27.
    E.S. Kim, E.S. Chun, D.H. Kang, Effects of structural characteristics on microwave dielectric properties of (1 − x)Ca0.85Nd0.1TiO3xLnAlO3 (Ln = Sm, Er and Dy) ceramics. J. Eur. Ceram. Soc. 27, 3005–3010 (2007)CrossRefGoogle Scholar
  28. 28.
    N.E. Brese, M. O’Keeffe, Bond-valence parameters for solids. Acta. Cryst. B47, 192–197 (1991)CrossRefGoogle Scholar
  29. 29.
    M. Yashima, R. Ali, Structural phase transition and octahedral tilting in the calcium titanate perovskite CaTiO3. Solid State Ionics 180, 120–126 (2009)CrossRefGoogle Scholar
  30. 30.
    Y.S. Zhao, Crystal chemistry and phase transitions of perovskite in PTX space: data for (KxNa1−x)MgF3 perovskite. J. Solid State Chem. 141, 121–132 (1998)CrossRefGoogle Scholar
  31. 31.
    J.M. Li, Y.X. Han, T. Qiu et al., Effect of bond valence on microwave dielectric properties of (1 − x)CaTiO3x(Li0.5La0.5)TiO3 ceramics. Mater. Res. Bull. 47, 2375 (2012)CrossRefGoogle Scholar
  32. 32.
    J.J. Qu, F. Liu, X. Wei et al., New dielectric material systems of SrxNd2(1−x)/3TiO3 perovskites-like at microwave frequencies. Mater. Chem. Phys. 173, 309–316 (2016)CrossRefGoogle Scholar
  33. 33.
    R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73(1), 348–366 (1993)CrossRefGoogle Scholar
  34. 34.
    F. Zhao, Z.X. Yue, Y.Z. Lin et al., Phase relation and microwave dielectric properties of xCaTiO3–(1–x)TiO2–3ZnTiO3 multiphase ceramics. Ceram. Int. 33, 895–900 (2007)CrossRefGoogle Scholar
  35. 35.
    C.H. Hsun, C.H. Chang, A temperature-stable and high-Q microwave dielectric ceramic of the MgTiO3–(Ca0.8Sr0.2)(Zr0.1Ti0.9)O3 system. Ceram. Int. 41, 6965–6969 (2015)CrossRefGoogle Scholar
  36. 36.
    C.H. Hsun, S.H. Tsai, Dielectric characteristics of Sr substitution on Ca0.4Sm0.4TiO3 ceramics at microwave frequency. Ceram. Int. 40, 10111–10114 (2014)CrossRefGoogle Scholar
  37. 37.
    J.M. Li, T. Qiu, Microwave dielectric properties of (1–x)Ca0.6La0.267TiO3xCa(Sm0.5Nb0.5)O3 ceramics. Ceram. Int. 38, 4331–4335 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jingjing Qu
    • 1
  • Delong Huang
    • 1
  • Xing Wei
    • 1
  • Fei Liu
    • 2
    • 3
  • Changlai Yuan
    • 2
  • Bailin Qin
    • 2
  1. 1.Department of Computer Science and EngineeringGuilin University of Aerospace TechnologyGuilinChina
  2. 2.College of Material Science and EngineeringGuilin University of Electronic TechnologyGuilinChina
  3. 3.College of Material Science and EngineeringCentral South UniversityChangshaChina

Personalised recommendations