Skip to main content
Log in

Effect of NdAlO3 on microstructure, dielectric properties and temperature-stable mechanism of (Sr, Ca, Nd)TiO3 ceramics at microwave frequency

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Microwave dielectric ceramics (1 − x)(Sr0.3Ca0.427Nd0.182)TiO3xNdAlO3 (abbreviated as SCNTAx hereafter, 0.1 ≤ x ≤ 0.4) were prepared by conventional mixed oxide route, and their phase composition, microstructure and microwave dielectric properties were investigated as a function of the x value and sintering temperatures. A single tilted orthorhombic perovskite structure in space group Pnma was refined in the studied composition range. For microware dielectric properties, the decreasing relative permittivity was strongly affected by the ionic polarizability of Nd3+ and Al3+ in SCNTAx ceramic systems. Also, the quality factor of SCNTAx solid solution had strongly depended on apparent densities and average grain sizes. As expected, the promising ceramic of SCNTAx (x = 0.25) sintered at 1520 °C for 4 h was found to possess good microwave dielectric properties: a relative permittivity (ε r) of 55.6, a quality factor (Q × f) of 25,600 GHz (at 4.249 GHz) and a temperature coefficient of resonant frequency (τ f ) of 6.7 ppm/°C. Especially, the τ f values of SCNTAx ceramics were not strongly depended on tolerance factor (t) with increasing of the NdAlO3 content, while these τ f values were essentially correlated with the B-site bond valence and octahedral tilting. Wherein, either decreasing the B-site bond valence or increasing the octahedral tiltings (θ and φ) led to a decrease in τ f value for the present ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Liang, M. Ni, W.Z. Lu et al., Crystal structure and microwave dielectric properties of CaTiO3–La[Ga(1−δ)Al δ ]O3 ceramics system. Mater. Res. Bull. 57, 140–145 (2014)

    Article  Google Scholar 

  2. P.L. Wise, I.M. Reaney, W.E. Lee et al., Structure microwave property relations in (Sr x Ca1–x ) n+1Ti n O3n+1. J. Eur. Ceram. Soc. 21, 1723–1726 (2001)

    Article  Google Scholar 

  3. I.S. Kim, W.H. Jung, Y. Inaguma et al., Dielectric properties of A site deficient perovskite type lanthanum-calcium-titanium oxide solid solution system (1 − x)La2/3TiO3–xCaTiO3 (0.1 ≤ x ≤ 0.96). Mater. Res. Bull. 30, 307–316 (1995)

    Article  Google Scholar 

  4. M.S. Fu, X.Q. Liu, X.M. Chen, Structure and microwave dielectric characteristics of Ca1−x Nd2x/3TiO3 ceramics. J. Eur. Ceram. Soc. 28, 585–590 (2008)

    Article  Google Scholar 

  5. W.S. Kim, E.S. Kim, K.H. Yoon, Effects of Sm3+ substitution on dielectric properties of Ca1−x Sm2x/3TiO3 ceramics at microwave frequencies. J. Am. Ceram. Soc. 82, 2111–2115 (1999)

    Article  Google Scholar 

  6. M.H. Kim, S. Nahm, C.H. Choi et al., Dielectric properties of (1 − x)NdGaO3xCaTiO3 solid solution at microwave frequencies. Jpn. J. Appl. Phys. 41, 717–721 (2002)

    Article  Google Scholar 

  7. H.X. Yuan, X.M. Chen, M.M. Mao, Structure and microwave dielectric characteristics of Ca1+x Nd1−x Al1−x Ti x O4 ceramics. J. Am. Ceram. Soc. 92(10), 2286–2290 (2009)

    Article  Google Scholar 

  8. D.D. Khalyavin, A.N. Salak, A.M.R. Senos et al., Ferreira Structure sequence in the CaTiO3–LaAlO3 microwave ceramics-revised. J. Am. Ceram. Soc. 89(5), 1721–1723 (2006)

    Article  Google Scholar 

  9. R.C. Kell, A.C. Greenham, G.C.E. Olds, High-permittivity temperature-stable ceramic dielectrics with low microwave loss. J. Am. Ceram. Soc. 56(7), 352–354 (1974)

    Article  Google Scholar 

  10. C.J. Howard, G.R. Lumpkin, R.I. Smith et al., Crystal structures and phase transition in the system SrTiO3–La2/3TiO3. J. Solid. State. Chem. 177, 2726–2732 (2004)

    Article  Google Scholar 

  11. C.L. Huang, K.H. Chiang, Dielectric properties of B2O3 doped (1–x)LaAlO3–xSrTiO3 ceramic system at microwave frequency range. Mater. Res. Bull. 37, 1941–1948 (2002)

    Article  Google Scholar 

  12. F. Liu, C.L. Yuan, X.Y. Liu et al., Microstructures and dielectric properties of (1 − x)SrTiO3xCa0.61Nd0.26TiO3 ceramic system at microwave frequencies. J. Mater. Sci.: Mater. Electron. 26(1), 128–133 (2015)

    Google Scholar 

  13. S.Y. Cho, I.T. Kim, K.S. Hong, Microwave dielectric properties and applications of rare earth aluminates. J. Mater. Res. 14, 114–119 (1999)

    Article  Google Scholar 

  14. B. Hakki, P. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE Trans. Microwave Theory Tech. MTT 8, 402–410 (1960)

    Article  Google Scholar 

  15. W. Courtney, Analysis and evaluation of a method of measuring complex permittivity and permeability of microwave materials. IEEE Trans. Microwave Theory Tech. MTT 18, 476–485 (1970)

    Article  Google Scholar 

  16. T. Nishikawa, K. Wakino, H. Tamura et al., Precise measurement method for temperature coefficient of microwave dielectric resonator material. IEEE MTT-S Int. Microwave Symp. Dig. 3, 277–280 (1987)

    Google Scholar 

  17. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Cryst. A 32, 751–767 (1976)

    Article  Google Scholar 

  18. M. Reaney, E.L. Colla, N. Setter, Dielectric and structural characteristics of Ba and Sr based complex perovskites as a function of tolerance factor. Jpn. J. Appl. Phys. 33, 3984–3990 (1994)

    Article  Google Scholar 

  19. I.M. Reaney, R. Ubic, Dielectric and structural characteristics of perovskites and related materials as a function of tolerance factor. Ferroelectrics 228, 23–38 (1999)

    Article  Google Scholar 

  20. A.M. Glazer, The classification of tilted octahedral perovskites. Acta. Cryst. B28, 3384–3392 (1972)

    Article  Google Scholar 

  21. A.M. Glazer, Simple ways of determining perovskite structures. Acta. Cryst. A31, 756–762 (1975)

    Article  Google Scholar 

  22. L.A. Khalam, M.T. Sebastian, Microwave dielectric properties of Sr(B′1/2Nb1/2)O3 [B′ = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Er, Yb and In] ceramics. Int. J. Appl. Ceram. Tech. 3, 364–374 (2006)

    Article  Google Scholar 

  23. L.A. Khalam, M.T. Sebastian, Low loss dielectrics in the Ca(B′1/2B″1/2)O3 [B′ = lanthanides, y] system. J. Am. Ceram. Soc. 90, 1467–1474 (2007)

    Article  Google Scholar 

  24. W.R. Yang, C.C. Pan, C.L. Huang, Influence of Mg substitutions for Zn on the phase relation and microwave dielectric properties of (Zn1−x Mg x )3Nb2O8 (x = 0.02–1.0) system. J. Alloys. Comp. 581, 257–262 (2013)

    Article  Google Scholar 

  25. E.S. Kim, B.S. Chun, D.W. Yoo et al., Microwave dielectric properties of (1 − x)(Ca0.7Nd0.2)TiO3x(Li0.5Nd0.5)TiO3 ceramics. Mater. Sci. Eng. B 99, 247–251 (2003)

    Article  Google Scholar 

  26. J. Qu, C. Yuan, F. Liu et al., Microstructures and microwave dielectric properties of (1−x)Sr0.2Na0.4Sm0.4TiO3xLnAlO3 (Ln = Nd, Pr and Sm) ceramic systems. J. Mater. Sci.: Mater. Electron. 26(7), 4862–4869 (2015)

    Google Scholar 

  27. E.S. Kim, E.S. Chun, D.H. Kang, Effects of structural characteristics on microwave dielectric properties of (1 − x)Ca0.85Nd0.1TiO3xLnAlO3 (Ln = Sm, Er and Dy) ceramics. J. Eur. Ceram. Soc. 27, 3005–3010 (2007)

    Article  Google Scholar 

  28. N.E. Brese, M. O’Keeffe, Bond-valence parameters for solids. Acta. Cryst. B47, 192–197 (1991)

    Article  Google Scholar 

  29. M. Yashima, R. Ali, Structural phase transition and octahedral tilting in the calcium titanate perovskite CaTiO3. Solid State Ionics 180, 120–126 (2009)

    Article  Google Scholar 

  30. Y.S. Zhao, Crystal chemistry and phase transitions of perovskite in PTX space: data for (K x Na1−x )MgF3 perovskite. J. Solid State Chem. 141, 121–132 (1998)

    Article  Google Scholar 

  31. J.M. Li, Y.X. Han, T. Qiu et al., Effect of bond valence on microwave dielectric properties of (1 − x)CaTiO3x(Li0.5La0.5)TiO3 ceramics. Mater. Res. Bull. 47, 2375 (2012)

    Article  Google Scholar 

  32. J.J. Qu, F. Liu, X. Wei et al., New dielectric material systems of Sr x Nd2(1−x)/3TiO3 perovskites-like at microwave frequencies. Mater. Chem. Phys. 173, 309–316 (2016)

    Article  Google Scholar 

  33. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73(1), 348–366 (1993)

    Article  Google Scholar 

  34. F. Zhao, Z.X. Yue, Y.Z. Lin et al., Phase relation and microwave dielectric properties of xCaTiO3–(1–x)TiO2–3ZnTiO3 multiphase ceramics. Ceram. Int. 33, 895–900 (2007)

    Article  Google Scholar 

  35. C.H. Hsun, C.H. Chang, A temperature-stable and high-Q microwave dielectric ceramic of the MgTiO3–(Ca0.8Sr0.2)(Zr0.1Ti0.9)O3 system. Ceram. Int. 41, 6965–6969 (2015)

    Article  Google Scholar 

  36. C.H. Hsun, S.H. Tsai, Dielectric characteristics of Sr substitution on Ca0.4Sm0.4TiO3 ceramics at microwave frequency. Ceram. Int. 40, 10111–10114 (2014)

    Article  Google Scholar 

  37. J.M. Li, T. Qiu, Microwave dielectric properties of (1–x)Ca0.6La0.267TiO3xCa(Sm0.5Nb0.5)O3 ceramics. Ceram. Int. 38, 4331–4335 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

Financial supports of the National Natural Science Foundation of China (Grant No. 11464006), the Natural Science Foundation of Guangxi (Grant No. 2014GXNSFBA118254).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, J., Huang, D., Wei, X. et al. Effect of NdAlO3 on microstructure, dielectric properties and temperature-stable mechanism of (Sr, Ca, Nd)TiO3 ceramics at microwave frequency. J Mater Sci: Mater Electron 27, 11110–11117 (2016). https://doi.org/10.1007/s10854-016-5228-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5228-4

Keywords

Navigation