Advertisement

Effects of film thickness and sputtering power on properties of ITO thin films deposited by RF magnetron sputtering without oxygen

  • Amalraj Peter Amalathas
  • Maan M. Alkaisi
Article

Abstract

In this work, indium tin oxide (ITO) thin films were grown on a glass substrate without introducing oxygen into the growth environment using RF magnetron sputtering technique. The dependence of surface morphological, optical and electrical properties at different film thicknesses and sputtering RF power were investigated. Results showed that these properties were strongly influenced by the film thickness and sputtering RF power. It was found that the resistivity, sheet resistance and optical transmittance of ITO thin films deposited on glass substrate decreased as film thickness increased from 75 to 225 nm while the surface roughness and optical bandgap increased. The optimum properties were obtained for ITO films 225 nm thick grown at 250 W RF power. This has revealed an excellent figure of merit of (38.4 × 10−4 Ω−1) with average transmittance (83.3 %), resistivity (9.4 × 10−4 Ω cm), and carrier concentration (6.1 × 1020 cm−3). These ITO films are suitable for use in solar cells applications.

Keywords

Film Thickness Carrier Concentration Sheet Resistance Optical Transmittance Spectrum High Optical Transmission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank Gary Turner and Helen Devereux from the Nanofabrication Laboratory, University of Canterbury, New Zealand for providing technical assistance and Prof. Roger Reeves for transmittance measurements. Amalraj PA acknowledges the UC Doctorate Scholarship, University of Canterbury, New Zealand.

References

  1. 1.
    H. Kim, A. Pique, J. Horwitz, H. Mattoussi, H. Murata, Z. Kafafi, D. Chrisey, Appl. Phys. Lett. 74, 3444 (1999)CrossRefGoogle Scholar
  2. 2.
    G. Li, C.-W. Chu, V. Shrotriya, J. Huang, Y. Yang, Appl. Phys. Lett. 88, 253503 (2006)CrossRefGoogle Scholar
  3. 3.
    N. Patel, P. Patel, V. Vaishnav, Sens. Actuator B-Chem. 96, 180 (2003)CrossRefGoogle Scholar
  4. 4.
    H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, H. Morkoç, Superlattices Microstruct. 48, 458 (2010)CrossRefGoogle Scholar
  5. 5.
    S. Najwa, A. Shuhaimi, N. Ameera, K. Hakim, M. Sobri, M. Mazwan, M. Mamat, Y. Yusnizam, V. Ganesh, M. Rusop, Superlattices Microstruct. 72, 140 (2014)CrossRefGoogle Scholar
  6. 6.
    A. Amaral, P. Brogueira, C.N. De Carvalho, G. Lavareda, Surf. Coat. Technol. 125, 151 (2000)CrossRefGoogle Scholar
  7. 7.
    D. Kim, Y. Han, J.-S. Cho, S.-K. Koh, Thin Solid Films 377, 81 (2000)CrossRefGoogle Scholar
  8. 8.
    J.H. Kim, K.A. Jeon, G.H. Kim, S.Y. Lee, Appl. Surf. Sci. 252, 4834 (2006)CrossRefGoogle Scholar
  9. 9.
    T. Maruyama, K. Fukui, Thin Solid Films 203, 297 (1991)CrossRefGoogle Scholar
  10. 10.
    S. Rozati, T. Ganj, Renew. Energy 29, 1671 (2004)CrossRefGoogle Scholar
  11. 11.
    K. Ellmer, T. Welzel, J. Mater. Res. 27, 765 (2012)CrossRefGoogle Scholar
  12. 12.
    H. Park, S. Q. Hussain, S. Velumani, A.H.T. Le, S. Ahn, S. Kim, J. Yi, Mat. Sci. Semicond. Proc. 37, 29 (2015)CrossRefGoogle Scholar
  13. 13.
    D. Song, Appl. Surf. Sci. 254, 4171 (2008)CrossRefGoogle Scholar
  14. 14.
    Y.J. Kim, S.B. Jin, S.I. Kim, Y.S. Choi, I.S. Choi, J.G. Han, Thin Solid Films 518, 6241 (2010)CrossRefGoogle Scholar
  15. 15.
    H.-C. Lee, O.O. Park, Vacuum 75, 275 (2004)CrossRefGoogle Scholar
  16. 16.
    F. Adurodija, H. Izumi, T. Ishihara, H. Yoshioka, M. Motoyama, K. Murai, J. Vac. Sci. Technol. A 18, 814 (2000)CrossRefGoogle Scholar
  17. 17.
    Y. Shigesato, R. Koshi-Ishi, T. Kawashima, J. Ohsako, Vacuum 59, 614 (2000)CrossRefGoogle Scholar
  18. 18.
    R. Buzio, E. Gnecco, C. Boragno, U. Valbusa, P. Piseri, E. Barborini, P. Milani, Surf. Sci. 444, L1 (2000)CrossRefGoogle Scholar
  19. 19.
    H. Kim, J. Horwitz, G. Kushto, A. Pique, Z. Kafafi, C. Gilmore, D. Chrisey, J. Appl. Phys. 88, 6021 (2000)CrossRefGoogle Scholar
  20. 20.
    H.R. Fallah, M. Ghasemi, A. Hassanzadeh, H. Steki, Phys. B 373, 274 (2006)CrossRefGoogle Scholar
  21. 21.
    S. Ishibashi, Y. Higuchi, Y. Ota, K. Nakamura, J. Vac. Sci. Technol. A 8, 1403 (1990)CrossRefGoogle Scholar
  22. 22.
    E. Burstein, Phys. Rev. 93, 632 (1954)CrossRefGoogle Scholar
  23. 23.
    T. Moss, Proc. Phys. Soc. Sect. B 67, 775 (1954)CrossRefGoogle Scholar
  24. 24.
    G. Haacke, J. Appl. Phys. 47, 4086 (1976)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Electrical and Computer Engineering, MacDiarmid Institute for Advanced Materials and NanotechnologyUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations