Luminescence properties and thermal quenching behavior of Dy3+ activated Ca5Y3Na2(PO4)5(SiO4)F2 phosphor

  • Yifan Wang
  • Yurong Shi


Dy3+ activated Ca5Y3Na2(PO4)5(SiO4)F2 phosphor was prepared via solid state reaction and its luminescence properties were investigated. XRD patterns confirm that all samples exhibit pure apatite phase. The analysis revealed that under UV light excitation, Ca5Y3Na2(PO4)5(SiO4)F2:Dy3+ phosphor exhibit blue and yellow peaks with CIE coordinates of (0.396, 0.421) and CCT of 3916 K. The concentration quenching mechanism between Dy3+ has been investigated. Excellent thermal stability was found in this new apatite phosphor. Besides, three additional emission peaks appear under higher temperature. With increasing temperature, the emission intensity of new peaks increase, which could be contributed to 4I15/26Hj (j = 15/2, 13/2, 11/2) transitions of Dy3+. The abnormal thermal quenching behavior was discussed in detail.


Apatite Blue Emission Apatite Phosphor Strong Excitation Peak Inorganic Luminescence Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Project supported by Program for Scientific Research Foundation of the Higher Education Institutions of He’nan Province (15A430054), High level personnel fund of Zhoukou Normal University (ZKNU2014106), Open project of Zhoukou Normal University (K201501).


  1. 1.
    M. Zahedifar, Z. Chamanzadeh, M. Madani, M. Moradi, N. Sharifpour, J. Mater. Sci.: Mater. Electron. 27, 4447–4456 (2016)Google Scholar
  2. 2.
    Z. Lei, X. Zhang, D. Wang, J. Chen, L. Cong, D. Meng, Y. Wang, J. Mater. Sci.: Mater. Electron. (2016). doi: 10.1007/s10854-016-4668-1 Google Scholar
  3. 3.
    X. Liu, C. Lin, Y. Luo, J. Lin, J. Electrochem. Soc. 154, J21–J27 (2007)CrossRefGoogle Scholar
  4. 4.
    X. Zhang, Z. Lu, F. Meng, L. Hu, X. Xu, J. Lin, C. Tang, Mater. Lett. 79, 292–295 (2012)CrossRefGoogle Scholar
  5. 5.
    J.P. Zhong, H.B. Liang, B. Han, Z.F. Tian, Q. Su, Y. Tao, Opt. Exp. 16, 7508–7515 (2008)CrossRefGoogle Scholar
  6. 6.
    C.K. Jayasankar, V. Venkatramu, S.S. Babu, P. Babu, J. Alloys Compd. 374, 22–26 (2004)CrossRefGoogle Scholar
  7. 7.
    B.V. Ratnam, M. Jayasimhadri, K. Jang, H.S. Lee, S.S. Yi, J.H. Jeong, J. Am. Ceram. Soc. 93, 3857–3861 (2010)CrossRefGoogle Scholar
  8. 8.
    P. Li, Z. Yang, Z. Wang, Q. Guo, Mater. Lett. 62, 1455–1457 (2008)CrossRefGoogle Scholar
  9. 9.
    T. Nakajima, T. Tsuchiya, A.C.S. Appl, Mater. Interfaces 7, 21398–21407 (2015)CrossRefGoogle Scholar
  10. 10.
    Z. Xia, C. Ma, M.S. Molokeev, Q. Liu, K. Rickert, K.R. Poeppelmeier, J. Am. Chem. Soc. 137, 12494–12497 (2015)CrossRefGoogle Scholar
  11. 11.
    Y. Luo, Z. Xia, J. Phys. Chem. C 118, 23297–23305 (2014)CrossRefGoogle Scholar
  12. 12.
    K. Sudarsanan, R.A. Young, Acta Crystallogr. B 25, 1534–1543 (1969)CrossRefGoogle Scholar
  13. 13.
    A.M. Latshaw, K.D. Hughey, M.D. Smith, J. Yeon, H. Loye, Inorg. Chem. 54, 876–884 (2014)CrossRefGoogle Scholar
  14. 14.
    T. Deng, Z. Xia, H. Ding, Chem. Phys. Lett. 637, 67–70 (2015)CrossRefGoogle Scholar
  15. 15.
    R. Mi, C. Zhao, Z. Xia, J. Am. Ceram. Soc. 97, 1802–1808 (2014)CrossRefGoogle Scholar
  16. 16.
    X. Fu, W. Lü, M. Jiao, H. Peng, Inorg. Chem. (2016). doi: 10.1021/acs.inorgchem.6b00648 Google Scholar
  17. 17.
    M. Xie, G. Zhu, D. Li, R. Pan, X. Fu, RSC Adv. 6, 33990–33997 (2016)CrossRefGoogle Scholar
  18. 18.
    C. Li, J. Dai, J. Huang, D. Deng, H. Yu, L. Wang, Y. Ma, Y. Hua, S. Xu, Ceram. Int. 42, 6891–6898 (2016)CrossRefGoogle Scholar
  19. 19.
    M. Jiao, N. Guo, W. Lü, Y. Jia, W. Lv, Q. Zhao, B. Shao, H. You, Inorg. Chem. 52, 10340–10346 (2013)CrossRefGoogle Scholar
  20. 20.
    C. Zeng, Y. Hu, Z. Xia, H. Huang, RSC Adv. 5, 68099–68108 (2015)CrossRefGoogle Scholar
  21. 21.
    N. Guo, H. You, C. Jia, R. Ouyang, D. Wu, Dalton Trans. 43, 12373–12379 (2014)CrossRefGoogle Scholar
  22. 22.
    Y. Shi, B. Liu, W. Li, X. Yang, Z. Ci, C. Li, Z. Wang, F. Chen, J. Alloys Compd. 664, 492–498 (2016)CrossRefGoogle Scholar
  23. 23.
    G. Zhu, Z. Ci, S. Xin, Y. Wen, Y. Wang, Mater. Lett. 91, 304–306 (2013)CrossRefGoogle Scholar
  24. 24.
    Y. Shi, Y. Wang, Z. Yang, J. Alloys Compd. 509, 3128–3131 (2011)CrossRefGoogle Scholar
  25. 25.
    M. Yu, J. Lin, Z. Wang, J. Fu, S. Wang, H.J. Zhang, Y.C. Han, Chem. Mater. 14, 2224–2231 (2002)CrossRefGoogle Scholar
  26. 26.
    C. Tatu, U.P.B. Sci. Bull. Series A 75, 225–232 (2013)Google Scholar
  27. 27.
    A.K. Vishwakarma, K. Jha, M. Jayasimhadri, B. Sivaiah, B. Gahtori, D. Haranath, Dalton Trans. 44, 17166–17174 (2015)CrossRefGoogle Scholar
  28. 28.
    G. Blasse, Phys. Lett. 28A, 444–445 (1968)CrossRefGoogle Scholar
  29. 29.
    L.G. Van Uitert, J. Electrochem. Soc. 114, 1048–1053 (1968)CrossRefGoogle Scholar
  30. 30.
    Z. Ci, R. Guan, L. Jin, L. Han, J. Zhang, J. Ma, Y. Wang, CrystEngComm 17, 4982–4986 (2015)CrossRefGoogle Scholar
  31. 31.
    P. You, G. Yin, X. Chen, B. Yue, Z. Huang, X. Liao, Y. Yao, Opt. Mater. 33, 1808–1812 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Patent Examination Cooperation Center of the Patent OfficeSIPOZhengzhouChina
  2. 2.The Key Laboratory of Rare Earth Functional Materials and ApplicationsZhoukou Normal UniversityZhoukouChina

Personalised recommendations