Effect of substrate temperature on the optical properties of CaBi4Ti4O15 thin films deposited by pulsed laser ablation

  • Sivanagi Reddy Emani
  • K. C. James Raju


Thin films of CaBi4Ti4O15 (CBTi) were deposited at different substrate temperatures (550–700 °C) using pulsed laser ablation technique. Structural, morphological and linear optical properties of the same were investigated. The CBTi thin films crystallize above 550 °C and forms single phase is confirmed by XRD and Raman spectroscopy. The lattice strain induced during deposition, controls the unit cell volume, grain size and crystallite size. The refractive index, real and imaginary parts of optical dielectric constant and optical band gap were extracted from transmission spectra (190–2500 nm). Tauc’s plot confirmed the direct band gap nature ranging from 3.4 to 3.6 eV. The study on CBTi thin films and their optical properties opens up a new window for optical applications.


Bismuth Deposition Temperature Optical Conductivity Full Width Half Maximum Pulse Laser Ablation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the facilities provided by the School of Physics (SoP), School of chemistry (SoC) and Center for Nanotechnology (DST) of University of Hyderabad for this work. We also acknowledge DRDO through ACRHEM for financial support.


  1. 1.
    K.T. Butler, Jarvist M. Frost, Aron Walsh, Energy Environ. Sci 8, 838–848 (2015)CrossRefGoogle Scholar
  2. 2.
    D. Ilya Grinberg, V. West, M. Torres, G. Gou, D.M. Stein, L. Wu, G. Chen, Nature 503, 509–512 (2013)Google Scholar
  3. 3.
    Z.-Y. Shen, H. Sun, Y. Tang, Y. Li, S. Zhang, Mater. Res. Bull. 63, 129–133 (2015)CrossRefGoogle Scholar
  4. 4.
    D. Xin, Z. Peng, F. Huang, Q. Chen, J. Wu, Y. Wang, X. Yue, D. Xiao, J. Zhu, J. Mater. Sci.: Mater. Electron 27, 913–920 (2016)Google Scholar
  5. 5.
    L. Fei, Z. Zhou, S. Hui, X.J. Dong, Mater. Sci.: Mater. Electronics 26, 6843–6847 (2015)Google Scholar
  6. 6.
    X. He, B. Wang, X. Fu, Z. Chen, J. Mater. Sci.: Mater Electron. 25, 3396–3402 (2014)Google Scholar
  7. 7.
    J. Kimura, I. Takuwa, M. Matsushima, T. Shimizu, H. Uchida, T. Kiguchi et al., Sci. Rep. 6, 20713 (2016)CrossRefGoogle Scholar
  8. 8.
    E.S. Reddy, S. Sukumaran, K.C. James Raju, Mater. Today: Proc. 3, 2213–2219 (2016)CrossRefGoogle Scholar
  9. 9.
    D. Xin, Q. Chen, J. Wu, S. Bao, W. Zhang, D. Xiao, J. Zhu, J. Electron. Mater. 45, 3597–3602 (2016)CrossRefGoogle Scholar
  10. 10.
    Z.-Y. Shena, W.-Q. Luo, Y. Tang, S. Zhang, Y. Li, Ceram. Int. 42, 7868–7872 (2016)CrossRefGoogle Scholar
  11. 11.
    Y. Tang, Z-y Shen, S. Zhang, T.R. Shrout, J. Am. Ceram. Soc. 99, 1294–1298 (2016)CrossRefGoogle Scholar
  12. 12.
    D. Xin, Z. Peng, F. Huang, Q. Chen, J. Wu, Y. Wang, X. Yue, D. Xiao, J. Zhu, J. Mater. Sci.: Mater Electron 27, 913–920 (2016)Google Scholar
  13. 13.
    P. Xiao, Q. Zheng, M. Tian, Y. Guo, W. Xiaochun, X. Chenggang, D. Lin, RSC Adv. 6, 16387–16394 (2016)CrossRefGoogle Scholar
  14. 14.
    L. Fei, Z. Zhou, S. Hui, X. Dong, J. Mater. Sci.: Mater. Electronics 26, 6843–6847 (2015)Google Scholar
  15. 15.
    K. Kato, K. Suzuki, K. Nishizawa, T. Miki, Appl. Phy. Lett 78, 1119–1121 (2001)CrossRefGoogle Scholar
  16. 16.
    Y. Mizutani, T. Kiguchi, T.J. Konno, H. Funakubo, H. Uchida, Jpn. J. Appl. Phys 49, 09MA02 (2010)CrossRefGoogle Scholar
  17. 17.
    W. Wang, H. Zheng, Y. Liu, Z. Li, T. Zhang, W. Zhang, J. Phys. D Appl. Phys. 42, 105411 (2009)CrossRefGoogle Scholar
  18. 18.
    N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian et al., J. Appl. Phys. 100, 051606 (2006)CrossRefGoogle Scholar
  19. 19.
    M. Dawber, K.M. Rabe, J.F. Scott, Rev. Mod. Phys. 77, 1083 (2005)CrossRefGoogle Scholar
  20. 20.
    R. Eason (ed.), Pulsed Laser Deposition of Thin Films: Applications -Led Growth of Functional materials (Wiley, New York, 2007)Google Scholar
  21. 21.
    P.R. Willmott, J.R. Huber, Rev Mod. Phys. 72, 315–328 (2000)CrossRefGoogle Scholar
  22. 22.
    A. Tian, W. Ren, L. Wang, D. Huiling, X. Yao, J. Appl. Phys. 114, 134103 (2013)CrossRefGoogle Scholar
  23. 23.
    M.L.V. Mahesh, A.R. James, V.V. Bhanu, Prasad. J. Mater. Sci. Mater. Electron. 26, 4930–4935 (2015)CrossRefGoogle Scholar
  24. 24.
    J. Kimura, I. Takuwa, M. Matsushima, S. Yasui, T. Yamada, H. Funakubo, J. Appl. Phys. 114, 027002 (2013)CrossRefGoogle Scholar
  25. 25.
    T.J.B. Holland, S.A.T. Redfern, Mineral. Mag. 61, 65–77 (1997)CrossRefGoogle Scholar
  26. 26.
    J.-Y. Lin, C.-L. Wu, Adv. Mater. Sci. Eng. 2014, 425085 (2014)Google Scholar
  27. 27.
    A.Z. Simões, C.S. Riccardi, M.A. Ramírez, L.S. Cavalcante, E. Longo, J.A. Varela, Solid State Sci 9, 756–760 (2007)CrossRefGoogle Scholar
  28. 28.
    G. Pezzotti, J Appl. Phys. 113, 211301 (2013)CrossRefGoogle Scholar
  29. 29.
    Y. Yuzyuk, Phys. Solid State 54, 1026–1059 (2012)CrossRefGoogle Scholar
  30. 30.
    S. Kooriyattil, S.P. Pavunny, D. Barrionuevo, R.S. Katiyar, J. Appl. Phys. 116, 144101 (2014)CrossRefGoogle Scholar
  31. 31.
    S. Kojima, R. Imaizumi, S. Hamazaki, M. Takashige, Jpn. J. Appl. Phys 33(9 B), 5559–5564 (1994)CrossRefGoogle Scholar
  32. 32.
    A. Tanwar, K. Sreenivas, V. Gupta, J. Appl. Phys. 105, 084105 (2009)CrossRefGoogle Scholar
  33. 33.
    G. Biasotto, A.Z. Simoes, C.S. Riccardi, M.A. Zaghete, E. Longo, J.A. Varela, Advances in Materials Science and Engineering 2010, 710269 (2010)CrossRefGoogle Scholar
  34. 34.
    S. Kumari, N. Ortega, D.K. Pradhan, A. Kumar, J.F. Scott, R.S. Katiyar, J. Appl. Phys. 118, 184103 (2015)CrossRefGoogle Scholar
  35. 35.
    R. Swanepoel, J. Phps. E: Sci. Instrum. 16, 1214 (1983)CrossRefGoogle Scholar
  36. 36.
    K. Lakshun Naidu, M. Ghanashyam Krishna, Philos. Mag. 94, 30 (2014)CrossRefGoogle Scholar
  37. 37.
    J.C. Manifacier, J. Gasiot, J.P. Fillard, J. Phys. E: Sci. Instrum. 9, 1002 (1976)CrossRefGoogle Scholar
  38. 38.
    A. Tanwar, K. Sreenivas, V. Gupta, 18th IEEE international symposium on the applications of ferroelectrics ISAF 2009, 1—5, IEEE. (2009). doi: 10.1109/ISAF.2009.5307589
  39. 39.
    S.R. Emani, A. Joseph, K.C. James Raju, AIP Conference Proceedings 1731,080015 (2016)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Advanced Center of Research in High Energy Materials (ACRHEM), School of PhysicsUniversity of HyderabadHyderabadIndia
  2. 2.School of PhysicsUniversity of HyderabadHyderabadIndia

Personalised recommendations