Size-controlled synthesis of BiFeO3 nanoparticles by a facile and stable sol–gel method

  • Ben Qin
  • Yiping Guo
  • Di Pan
  • Chongyang Sun
  • Xingyu Wang
  • Huanan Duan
  • Hua Li
  • Hezhou Liu


Bismuth ferrite (BiFeO3) acting as a significant multiferroic material exhibits unique magnetic and ferroelectric properties. Here we report the size-controlled synthesis of BiFeO3 nanoparticles via a facile and stable Pechini sol–gel method, in which uses tartaric acid as a complexing agent, ethylene glycol as a polymerizing agent. It is found that the nanoparticle size is sensitive to the gel-forming temperature. The nanoparticles with size as small as 30 nm have been obtained. A sequential reaction process and the mechanism of size controllable growth of BiFeO3 has been presented. The effects of size on optical and magnetic properties have been also investigated. The decreasing particles lead to blue shift in the band gap. BiFeO3 nanoparticles show weak ferromagnetic character due to a Fe3+ oxidation state, and the magnetization increases with decrease in the particle size.


BiFeO3 Tartaric Acid Multiferroic Material BiFeO3 Nanoparticles Visible Reflectance Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the Natural Science Foundation of China (Nos. 11474199 and 51332009). School of Materials Science and Engineering, Shanghai Jiaotong University and National Engineering Research Center for Nanotechnology are gratefully acknowledged for assisting relevant analyses.


  1. 1.
    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719–1722 (2003)CrossRefGoogle Scholar
  2. 2.
    F. Gao, X.Y. Chen, K.B. Yin, S. Dong, Z.F. Ren, F. Yuan, T. Yu, Z.G. Zou, J.M. Liu, Adv. Mater. 19, 2889–2892 (2007)CrossRefGoogle Scholar
  3. 3.
    N. Ortega, A. Kumar, J.F. Scott, R.S. Katiyar, J. Phys. Condens. Matter 27, 504002 (2015)CrossRefGoogle Scholar
  4. 4.
    M. Tokunaga, M. Akaki, T. Ito, S. Miyahara, A. Miyake, H. Kuwahara, N. Furukawa, Nat. Commun. 6, 5878 (2015)CrossRefGoogle Scholar
  5. 5.
    Y. Wang, Q.-H. Jiang, H.-C. He, C.-W. Nan, Nat. Commun. 6, 142503 (2006)Google Scholar
  6. 6.
    S.M. Selbach, T. Tybell, M.-A. Einarsrud, T. Grande, Adv. Mater. 20, 3692–3696 (2008)CrossRefGoogle Scholar
  7. 7.
    S. Sharma, V. Singh, R.K. Kotnala, R.K. Dwivedi, J. Mater. Sci. Mater. Electron. 25, 1915–1921 (2014)CrossRefGoogle Scholar
  8. 8.
    J.G. Wu, J. Wang, Acta Mater. 58, 1688–1697 (2013)CrossRefGoogle Scholar
  9. 9.
    S.R. Basu, L.W. Martin, Y.H. Chu, M. Gajek, R. Ramesh, R.C. Rai, X. Xu, J.L. Musfeldt, Appl. Phys. Lett. 92, 091905 (2008)CrossRefGoogle Scholar
  10. 10.
    J.G. Wu, S. Qiao, J. Wang, D.Q. Xiao, J.G. Zhu, Appl. Phys. Lett. 102, 052904 (2013)CrossRefGoogle Scholar
  11. 11.
    F. Gao, Y. Yuan, K.F. Wang, X.Y. Chen, F. Chen, J.M. Liu, Z.F. Ren, Appl. Phys. Lett. 89, 102506 (2006)CrossRefGoogle Scholar
  12. 12.
    K. Takahashi, N. Kida, M. Tonouchi, Phys. Rev. Lett. 96, 117402 (2006)CrossRefGoogle Scholar
  13. 13.
    J.M. Wesselinowa, I. Apostolova, J. Appl. Phys. 104, 084108 (2008)CrossRefGoogle Scholar
  14. 14.
    S. Zhang, L. Wang, Z. Gao, X. Zhang, D. Wang, Y. Ma, Mater. Lett. 65, 3309–3312 (2011)CrossRefGoogle Scholar
  15. 15.
    M. Escobar Castillo, V.V. Shvartsman, D. Gobeljic, Y. Gao, J. Landers, H. Wende, D.C. Lupascu, Nanotechnology 24, 355701 (2013)CrossRefGoogle Scholar
  16. 16.
    T.P. Gujar, V.R. Shinde, C.D. Lokhande, Mater. Chem. Phys. 103, 142–146 (2007)CrossRefGoogle Scholar
  17. 17.
    H. Yang, T. Xian, Z.Q. Wei, J.F. Dai, J.L. Jiang, W.J. Feng, J. Sol-Gel. Sci. Technol. 58, 238–243 (2010)CrossRefGoogle Scholar
  18. 18.
    C. Chen, J. Cheng, S. Yu, L. Che, Z. Meng, J. Cryst. Growth 291, 135–139 (2006)CrossRefGoogle Scholar
  19. 19.
    N. Das, R. Majumdar, A. Sen, H.S. Maiti, Mater. Lett. 61, 2100–2104 (2007)CrossRefGoogle Scholar
  20. 20.
    S. Farhadi, M. Zaidi, J. Mol. Catal. A Chem. 299, 18–25 (2009)CrossRefGoogle Scholar
  21. 21.
    S. Ghosh, S. Dasgupta, A. Sen, H.S. Maiti, Mater. Res. Bull. 40, 2073–2079 (2005)CrossRefGoogle Scholar
  22. 22.
    P. Sharma, V. Verma, J. Magn. Magn. Mater. 374, 18–21 (2015)CrossRefGoogle Scholar
  23. 23.
    Y. Wang, G. Xu, L. Yang, Z. Ren, X. Wei, W. Weng, P. Du, G. Shen, G. Han, Ceram. Int. 35, 1285–1287 (2009)CrossRefGoogle Scholar
  24. 24.
    A. Chaudhuri, S. Mitra, M. Mandal, K. Mandal, J. Alloys Compd. 491, 703–706 (2010)CrossRefGoogle Scholar
  25. 25.
    E. Coronado, J.R. Galan-Mascaros, C.J. Gomez-Garcia, A. Murcia-Martinez, Chem. Eur. J. 12, 3484–3492 (2006)CrossRefGoogle Scholar
  26. 26.
    K. Chakrabarti, K. Das, B. Sarkar, S.K. De, J. Appl. Phys. 110, 103905 (2011)CrossRefGoogle Scholar
  27. 27.
    T.D. Kang, H. Lee, S.J. Park, J. Jang, S. Lee, J. Appl. Phys. 92, 2467 (2002)CrossRefGoogle Scholar
  28. 28.
    G.S. Lotey, N.K. Verma, J. Nanopart. Res. 13, 5397–5405 (2011)CrossRefGoogle Scholar
  29. 29.
    G.S. Lotey, N.K. Verma, Chem. Phys. Lett. 574, 71–77 (2013)CrossRefGoogle Scholar
  30. 30.
    B. Ramachandran, A. Dixit, R. Naik, G. Lawes, M.S.R. Rao, Phys. Rev. B 82, 012102 (2010)CrossRefGoogle Scholar
  31. 31.
    Y.B. Li, T. Sritharan, S. Zhang, X.D. He, Y. Liu, Appl. Phys. Lett. 92, 132908 (2008)CrossRefGoogle Scholar
  32. 32.
    S. Goswami, D. Bhattacharya, P. Choudhury, J. Appl. Phys. 109, 07D737 (2011)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ben Qin
    • 1
  • Yiping Guo
    • 1
  • Di Pan
    • 1
  • Chongyang Sun
    • 1
  • Xingyu Wang
    • 1
  • Huanan Duan
    • 1
  • Hua Li
    • 1
  • Hezhou Liu
    • 1
  1. 1.State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Material Building DShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations