Synthesis and properties of (Ni, Al) co-doped nanoparticles

  • P. Venkateswara Reddy
  • S. Venkatramana Reddy
  • B. Sankara Reddy


Pure and (Ni, Al) co-doped SnO2 nanoparticles are prepared using the chemical co-precipitation method. In this procedure SnCl2·2H2O, NiCl2·6H2O and AlCl2 act as precursor elements. The aqueous NH4OH and Poly Ethylene Glycol (PEG) are precipitate agent and stabilizing agent respectively. Pure samples and those doped with different concentration of Ni (1, 3, 5 mol%) with Al kept as constant at 5 mol% are grown. The, pH value, reaction time and reaction temperatures are optimized during synthesis. The X-ray diffraction (XRD) patterns indicate the formation of single phase tetragonal structure of pure and co-doped (Ni, Al) SnO2 nanoparticles. From XRD calculations, the sizes of the pure and (Ni, Al) co-doped nanoparticles yield the range of 10-20 nm. The Raman studies reveal that the Raman peaks at 340, 476, 625 and 776 cm−1, are correspond to Eu, Eg, A1g and B2g are respectively. Which are in good agreement with standard Raman vibrational modes and assign the pure and co-doped samples has tetragonal rutile phase structure. Optical absorption spectra show the absorption edge at 380 nm, in conformity with excitation and emission of PL spectra. The photoluminescence spectra (PL) exhibit the emission peaks in between 417 and 446 nm, which lie in UV and visible regions. SEM micro graphs show that the surface morphology of samples is nearly spherical, EDS spectra depicts the presence of Sn, O, Ni and Al in the chemical composition of samples in appropriate stoichiometric proportions. The transmission electron microscope micrographs show that the surface morphology of nanoparticles is spherical and average size of the nanoparticles is 20 nm. The magnetization measurements reveal that the anti ferromagnetism transferred to ferromagnetism in the prepared samples.


SnO2 High Resolution Transmission Electron Microscope High Resolution Transmission Electron Microscope Poly Ethylene Glycol SnO2 Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to express their gratitude to Prof. Y. Prabhakara Reddy (Retd.), Department of Physics, S.V. University, Tirupati for his critical discussions during the course of investigation and S.K. Kalimula, Assistant Professor, Department of Material Science, VIT University, Vellore, Tamilnadu, India. For his Valuable support to characterize the samples for UV-Absorbance.


  1. 1.
    A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Nano Lett. 5, 667 (2005)CrossRefGoogle Scholar
  2. 2.
    J.H. He, T.H. Wu, C.L. Hsin, K.M. Li, L.J. Chen, Y.L. Chueh, L.J. Chou, Z.L. Wang, Small 2, 116 (2006)CrossRefGoogle Scholar
  3. 3.
    Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S.Y. Koshihara, H. Koinuma, Science 291, 854 (2001)CrossRefGoogle Scholar
  4. 4.
    W. Prellier, A. Fouchet, B. Mercey, J. Phys. Condens. Matter 15, R1583 (2003)CrossRefGoogle Scholar
  5. 5.
    T. Fukumura, Y. Yamada, H. Toyosaki, T. Hasegawa, H. Koinuma, M. Kawasaki, Appl. Surf. Sci. 223, 62 (2004)CrossRefGoogle Scholar
  6. 6.
    C. Drake, S. Seal, Appl. Phys. Lett. 90, 233117 (2007)CrossRefGoogle Scholar
  7. 7.
    C. Kilic, A. Zunger, Phys. Rev. Lett. 88, 95501 (2002)CrossRefGoogle Scholar
  8. 8.
    C.M. Liu, X.T. Zu, W.L. Zhou, J. Phys. Condens. Matter 18, 6001 (2006)CrossRefGoogle Scholar
  9. 9.
    Y. Wang, X. Jiang, Y. Xia, J. Am. Chem. Soc. 125, 16176 (2003)CrossRefGoogle Scholar
  10. 10.
    A.A. Firooz, A.R. Mahjoub, A.A. Khodadadi, Sensor Actuator B 141, 89 (2009)CrossRefGoogle Scholar
  11. 11.
    F. Gu, S.F. Wang, M.K. Lu, Y.X. Qi, G.J. Zhou, D. Xu, D.R. Yuan, Opt. Mater. 25, 59 (2004)CrossRefGoogle Scholar
  12. 12.
    S. Ferrere, A. Zaban, B.A. Gsegg, J. Phys. Chem. B 101, 4490 (1997)CrossRefGoogle Scholar
  13. 13.
    V. Subramanian, K.I. Gnanasekar, B. Rambabu, Solid State Ion. 175, 181 (2004)CrossRefGoogle Scholar
  14. 14.
    S.R. Stampfi, Y. Chen, J.A. Dumesis, Ch. Niu, C.G. Hill, J. Catal. 105, 445 (1987)CrossRefGoogle Scholar
  15. 15.
    A. Bouaine, N. Brihi, G. Schmerber, C.U. Bouillet, S. Colis, A. Dinia, J. Phys. Chem. C 111, 2924 (2007)CrossRefGoogle Scholar
  16. 16.
    A. Punnoose, J. Hays, V. Gopal, V. Shutthanandan, Appl. Phys. Lett. 85, 1559 (2004)CrossRefGoogle Scholar
  17. 17.
    S.K. Misra, S.I. Andronenko, K.M. Reddy, J. Hays, A. Punnoose, J. Appl. Phys. 99, 08M106 (2006)CrossRefGoogle Scholar
  18. 18.
    T.V. Torchynska, A.V. Hernandez, A.D. Cano, S.J. Sandoval, S. Ostapenko, M. Mynbaeva, J. Appl. Phys. 97, 033507 (2005)CrossRefGoogle Scholar
  19. 19.
    P.S. Peercy, B. Morosin, Phys. Rev. B Solid State 7, 277 (1973)CrossRefGoogle Scholar
  20. 20.
    A. Dieguez, A. Romano-Rodriguez, A. Vila, J.R. Morante, J. Appl. Phys. 90, 1550 (2001)CrossRefGoogle Scholar
  21. 21.
    K.N. Yu, Y. Xiong, Y. Liu, C. Xiong, Phys. Rev. B 55, 2666 (1997)CrossRefGoogle Scholar
  22. 22.
    X. Wang, F.X. Zhang, I. Loa, K. Syassen, M. Hanfland, Y.L. Mathis, Phys. Status Solid B 241, 3168 (2004)CrossRefGoogle Scholar
  23. 23.
    H.C. Choi, Y.M. Jung, I. Noda, S.B. Kim, J. Phys. Chem. B 107, 5806 (2003)CrossRefGoogle Scholar
  24. 24.
    D. Gallant, M. Pezolet, S. Simard, J. Phys. Chem. B 110, 6871 (2006)CrossRefGoogle Scholar
  25. 25.
    V.G. Hadjiev, M.N. Iliev, I.V. Vergilov, J. Phys. C Solid State Phys. 21, L199 (1988)CrossRefGoogle Scholar
  26. 26.
    M. Fang, X.T. Zu, Z.J. Li, S. Zhu, C.M. Liu, L.M. Wang, F. Gao, J. Mater. Sci. Mater. Electron. 19, 868 (2008)CrossRefGoogle Scholar
  27. 27.
    D. Calestani, L. Lazzarini, G. Salviati, M. Zha, Cryst. Res. Technol. 40, 937 (2005)CrossRefGoogle Scholar
  28. 28.
    J.Q. Hu, X.L. Ma, N.G. Shang, Z.Y. Xie, N.B. Wong, C.S. Lee, S.T. Lee, J. Phys. Chem. B 106, 3823 (2002)CrossRefGoogle Scholar
  29. 29.
    H.W. Kim, N.H. Kim, J.H. Myung, S.H. Shim, Phys. Status Solid A 202, 1758 (2005)CrossRefGoogle Scholar
  30. 30.
    S. Brovelli, N. Chiodini, F. Meinardi, A. Lauria, A. Paleari, Appl. Phys. Lett. 89, 153126 (2006)CrossRefGoogle Scholar
  31. 31.
    P.S. Peercy, B. Morosin, Phys. Rev. B Solid State 7, 2779 (1973)CrossRefGoogle Scholar
  32. 32.
    D. Frohlich, R. Kenklies, Phys. Rev. Lett. 41, 1750 (1978)CrossRefGoogle Scholar
  33. 33.
    C.J. Cong, J.H. Hong, Q.Y. Liu, L. Liao, K.L. Zhang, Solid State Commun. 138, 511 (2006)CrossRefGoogle Scholar
  34. 34.
    F. Bloch, Z. Phys. A 61, 206 (1930)CrossRefGoogle Scholar
  35. 35.
    D. Zhang, K.J. Klabunde, C.M. Sorensen, Phys. Rev. B 58, 14167 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • P. Venkateswara Reddy
    • 1
  • S. Venkatramana Reddy
    • 1
  • B. Sankara Reddy
    • 2
  1. 1.Department of PhysicsSri Venkateswara UniversityTirupatiIndia
  2. 2.Visweswaraiah Institute of Science and TechnologyAngallu, Madana PalliIndia

Personalised recommendations