Low temperature reaction-sintering and microwave dielectric properties of ZnO–Nb2O5–2TiO2 ceramics

  • Pan Ruan
  • Peng Liu
  • Bao-chun Guo
  • Zhi-fen Fu


Low-temperature fired ZnO–Nb2O5–2TiO2 ceramics co-doped with CuO–V2O5 were fabricated by a reaction-sintering process. CuO–V2O5 addition effectively lowered the sintering temperature of ZnO–Nb2O5–2TiO2 ceramics to 950°C due to the liquid phase sintering. The phase compositions and microwave dielectric properties of ZnO–Nb2O5–2TiO2 ceramics depended on the CuO–V2O5 content and sintering temperatures. Typically, 1.5 wt% CuO–V2O5 co-doped ceramics sintered at 950°C for 5 h exhibited optimum microwave dielectric properties of ε r  = 45.9, Q × f = 12,200 GHz, τ f  = −1.8 ppm/°C. In addition, such sample was compatible with Ag electrode, suitable for the low-temperature co-fired ceramics (LTCC) applications.


Sinter Temperature V2O5 Nb2O5 Microwave Dielectric Property Increase Sinter Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the National Natural Science Foundation of China (Grant No:51272150 and 51572162) and Specialized Research Fund for the Doctoral Program of Higher Education (No.201202110004) and the Fundamental Research Funds for the Central Universities (GK201401003).


  1. 1.
    Y. Wu, D. Zhou, J. Guo, L.X. Pang, H. Wang, X. Yao, Mater. Lett. 65, 2680 (2011)CrossRefGoogle Scholar
  2. 2.
    H.K. Li, W.Z. Lu, W. Lei, Mater. Lett. 71, 148 (2012)CrossRefGoogle Scholar
  3. 3.
    Y. Imanaka, Multilayered Low Temperature Co-Fired Ceramics (LTCC) Technology (Springer, New York, 2005), p. 42Google Scholar
  4. 4.
    M.T. Sebastian, H. Jantunen, Int. Mater. Rev. 53(2), 57 (2008)CrossRefGoogle Scholar
  5. 5.
    D.W. Kim, D.Y. Kim, K.S. Hong, J. Mater. Res. 15(6), 1331 (2000)CrossRefGoogle Scholar
  6. 6.
    Y.C. Liou, C.Y. Shiue, M.H. Weng, J. Eur. Ceram. Soc. 29, 1165 (2009)CrossRefGoogle Scholar
  7. 7.
    D.W. Kim, C. An, Y.S. Lee, K.S. Bang, J.C. Kim, H.K. Lee, J. Mater. Sci. Lett. 22, 569 (2003)CrossRefGoogle Scholar
  8. 8.
    J.X. Bi, C.F. Xing, X.S. Jiang, J. Mater. Sci. Mater. Electron. (2016). doi: 10.1007/s10854-016-4803-z Google Scholar
  9. 9.
    P. Zhang, X.Y. Zhao, J. Mater. Sci. Mater. Electron. (2016). doi: 10.1007/s10854-016-4575-5 Google Scholar
  10. 10.
    H.T. Wu, J.X. Bi, J. Mater. Sci. Mater. Electron. 27, 5670 (2016)CrossRefGoogle Scholar
  11. 11.
    P. Ruan, P. Liu, J. Mater. Sci. Mater. Electron. 27(2016), 4201 (2016)CrossRefGoogle Scholar
  12. 12.
    C.F. Tseng, J. Alloys compd. 494, 252 (2010)CrossRefGoogle Scholar
  13. 13.
    Q.L. Zhang, H. Yang, Mater. Res. Bull. 40, 1891 (2005)CrossRefGoogle Scholar
  14. 14.
    C.L. Huang, C.H. Su, C.M. Chang, J. Am. Ceram. Soc. 94, 4146 (2011)CrossRefGoogle Scholar
  15. 15.
    S.P. Wu, J. Ni, J.H. Luo, Mater. Chem. Phys. 117, 307 (2009)CrossRefGoogle Scholar
  16. 16.
    S.H. Yoon, D.W. Kim, J. Eur. Ceram. Soc. 26, 2051 (2006)CrossRefGoogle Scholar
  17. 17.
    K.P. Surendran, N. Santha, P. Mohanan, Eur. Phys. J. B 41, 301 (2004)CrossRefGoogle Scholar
  18. 18.
    D.W. Kim, J.H. Kim, J.R. Kim, Jpn. J. Appl. Phys. 40, 5994 (2001)CrossRefGoogle Scholar
  19. 19.
    Y. Zheng, X.Z. Zhao, W. Lei, S.X. Wang, Mater. Lett. 60, 459 (2006)CrossRefGoogle Scholar
  20. 20.
    C.L. Huang, C.S. Hsu, R.J. Lin, Mater. Res. Bull. 36, 1985 (2001)CrossRefGoogle Scholar
  21. 21.
    J. Zhu, E.R. Kipkoech, W. Lu, J. Eur. Ceram. Soc. 26, 2027 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Physics and Information TechnologyShaanxi Normal UniversityXi’anChina

Personalised recommendations