Synthesis of polyaniline films: case study on post gamma irradiation dose

  • Nastaran Bafandeh
  • Madjid Mojtahedzadeh Larijani
  • Azizollah Shafiekhani
  • Mohammad Reza Hantehzadeh
  • Nasrin Sheikh


The effect of gamma irradiation dose in the range of 1–10 kGy is investigated on the structural, optical and electrical properties of the polyaniline -emeraldine salt (PANI-ES) thin films deposited on the indium tin oxide (ITO) coated glass substrate by spin coating technique. X-ray diffraction patterns show that all deposited PANI films have an amorphous character. Fourier transform infrared spectroscopy (FTIR) confirms the emeraldine salt form of deposited PANI films. The analysis of UV–Vis spectrophotometer indicates a decrease of transmittance intensity and optical band gap with increase of gamma irradiation dose while Urbach energy increases. The photoluminescence (PL) spectra show a strong peak at 429 nm due to transition from polaron band to π band in PANI structure which its intensity and peak area increase with irradiation dose increase. Electrical measurement shows that the resistivity of prepared films linearly increases with rise of gamma dose suggesting its possible application as gamma dosimeter in the studied range.


PANI Gamma Dose PANI Film Urbach Energy Emeraldine Base 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Compliance with ethical standards

Conflict of interest

The authors report no conflict of interests. The authors alone are responsible for the content and writing of the paper.


  1. 1.
    X. Zhang, L. Ji, S. Zhang, W. Yang, Synthesis of a novel polyaniline-intercalated layered manganese oxide nanocomposite as electrode material for electrochemical capacitor. J. Power Sources 173, 1017–1023 (2007)CrossRefGoogle Scholar
  2. 2.
    V.G. Kulkarni, L.D. Campbell, W.R. Mathew, Thermal stability of polyaniline. Synth. Met. 30, 321–325 (1989)CrossRefGoogle Scholar
  3. 3.
    A.J. Heeger, Semiconducting and metallic polymers: the fourth generation of polymeric materials. Rev. Mod. Phys. 73, 683 (2001)CrossRefGoogle Scholar
  4. 4.
    R. Sainz, A.M. Benito, M.T. Martinez, J.F. Galindo, J. Sotres, A.M. Baro, O. Chauvet, A.B. Dalton, R.H. Baughman, W.K. Maser, A soluble and highly functional polyaniline–carbon nanotube composite. Nanotechnology. 16, 150–154 (2005)CrossRefGoogle Scholar
  5. 5.
    P. Chandrasekhar, Conducting Polymers, Fundamentals and Applications: A Practical Approach (Kluwer Acad. Press, Boston, 1999)CrossRefGoogle Scholar
  6. 6.
    L. Shi, X. Wang, L. Lu, X. Yang, X. Wu, Preparation of TiO2/polyaniline nanocomposite from a lyotropic liquid crystalline solution. Synth. Met. 159, 2525–2529 (2009)CrossRefGoogle Scholar
  7. 7.
    A. Pron, P. Rannou, Processible conjugated polymers: from organic semiconductors to organic metals and superconductors. Prog. Polym. Sci. 27, 135–190 (2002)CrossRefGoogle Scholar
  8. 8.
    G. Ciric-Marjanovic, Polyaniline nanostructures, in Nano-structured Conductive Polymers, ed. by A. Eftekhari (Wiley, Chichester, 2010), pp. 19–98CrossRefGoogle Scholar
  9. 9.
    T.A. Skotheim, J.R. Reynolds, Conjugated Polymers: Theory, Synthesis, Properties, and Characterization (CRC Press, Boca Raton, 2007)Google Scholar
  10. 10.
    S. Ameen, M.S. Akhtar, M. Husain, Polyaniline and its nanocomposites: synthesis, processing, electrical properties and applications. Sci. Adv. Mater. 2, 441 (2010)CrossRefGoogle Scholar
  11. 11.
    T. Basu, S. Tarafdar, Influence of gamma irradiation on the electrical properties of LiClO4-gelatin solid polymer electrolytes: modelling anomalous diffusion through generalized calculus. Radiat. Phys. Chem. 125, 180–198 (2016)CrossRefGoogle Scholar
  12. 12.
    M.C. Kane, R.J. Lascola, E.A. Clark, Investigation on the effects of beta and gamma irradiation on conducting polymers for sensor applications. Radiat. Phys. Chem. 79, 1189–1195 (2010)CrossRefGoogle Scholar
  13. 13.
    M. Wolszczak, J. Kroh, M.M. Abdel-Hamid, Some aspects of the radiationprocessing of conducting polymers. Radiat. Phys. Chem. 1, 71–78 (1995)CrossRefGoogle Scholar
  14. 14.
    P.S. RemyaDevi, H. Bhatt, M.N. Deo, R. Verma, A.V.R. Reddy, Effect of gamma irradiation on the ion exchange capacity of polyaniline. Radiat. Phys. Chem. 96, 75–80 (2014)CrossRefGoogle Scholar
  15. 15.
    S. Nasirian, H. Milani, Moghadam, hydrogen gas sensing based on polyaniline/anatasetitaniananocomposite. Int. J. Hydrog. Energy. 39, 630–642 (2014)CrossRefGoogle Scholar
  16. 16.
    A. Mostafaei, A. Zolriasatein, Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods. Prog. Nat. Sci.: Mater. Int. 22, 273–280 (2012)CrossRefGoogle Scholar
  17. 17.
    D. Choi, S. Hong, Y. Son, Characteristics of indium tin oxide (ITO) nanoparticles recovered by lift-off method from TFT-LCD panel scraps. Materials. 7, 7662–7669 (2014)CrossRefGoogle Scholar
  18. 18.
    X. Li, W. Chen, C. Bian, J. He, N. Xu, G. Xue, Surface modification of TiO2 nanoparticles by polyaniline. Appl. Surf. Sci. 217, 16–22 (2003)CrossRefGoogle Scholar
  19. 19.
    S.V. Patil, P.R. Deshmukh, C.D. Lokhande, Fabrication and liquefied petroleum gas (LPG) sensing performance of p-polyaniline/n-PbS heterojunction at room temperature. Sens. Actuators, B 156, 450–455 (2011)CrossRefGoogle Scholar
  20. 20.
    A. Olad, S. Behboudi, A.A. Entezami, Preparation, characterization and photocatalytic activity of TiO2/polyaniline core-shell nanocomposite. Bull. Mater. Sci. 35, 801–809 (2012)CrossRefGoogle Scholar
  21. 21.
    E.T. Kang, K.G. Neoh, K.L. Tan, Polyaniline: a polymer with many interesting intrinsic redox states. Prog. Polym. Sci. 23, 277–324 (1998)CrossRefGoogle Scholar
  22. 22.
    A. Katoch, M. Burkhart, T. Hwang, S.S. Kim, Synthesis of polyaniline/TiO2 hybrid nanoplates via a sol–gel chemical method. Chem. Eng. J. 192, 262–268 (2012)CrossRefGoogle Scholar
  23. 23.
    S. Nasirian, H. MilaniMogha, Effect of different titania phases on the hydrogen gas sensing features of polyaniline/TiO2 nanocomposite. Polymer 55, 1866–1874 (2014)CrossRefGoogle Scholar
  24. 24.
    I. Sapurina, A.Y.U. Osadchev, B.Z. Volchek, M. Trchova, A. Riede, J. Stejskal, In-situ polymerized polyaniline films. 5. Brush-like chain ordering. Synth. Met. 129, 29–37 (2002)CrossRefGoogle Scholar
  25. 25.
    B. Haspulat, A. Gulce, H. Gulce, Efficient photocatalyticdecolorization of some textile dyes using Fe ions doped polyaniline film on ITO coated glass substrate. Hazard. Mater. 260, 518–526 (2013)CrossRefGoogle Scholar
  26. 26.
    S.L. Patil, M.A. Chougule, S.G. Pawar, S. Sen, V.B. Patil, Effect of camphor sulfonic acid doping on structural, morphological, optical and electrical transport properties on polyaniline-ZnO nanocomposites. Soft Nanosci. Lett. 2, 46–53 (2012)CrossRefGoogle Scholar
  27. 27.
    A.M. Meftah, E. Gharibshahi, N. Soltani, W.M.M. Yunus, E. Saion, Structural Optical and electrical properties of PVA/PANI/Nickel nanocomposites synthesized by gamma radiolytic method. Polymers. 6, 2435–2450 (2014)CrossRefGoogle Scholar
  28. 28.
    T. Sharma, S. Aggrawal, S. Kumar, V.K. Mittal, P.C. Kalsi, V.K. Manchanda, Effect of gamma irradiation on the optical properties of CR-39 polymer. J. Mater. Sci. 42, 1127–1130 (2007)CrossRefGoogle Scholar
  29. 29.
    S. Subramanian, D.P. Padiyan, Effect of structural, electrical and optical properties of electrodeposited bismuth selenide thin films in polyaniline aqueous medium. Mater. Chem. Phys. 107, 392–398 (2008)CrossRefGoogle Scholar
  30. 30.
    P. Bhttacharya, S. Dhibar, G. Hatui, A. Mandal, T. Das, C.K. Das, Graphene decorated with hexagonal shaped M-type ferrite and polyaniline wrapper: a potential candidate for electromagnetic wave absorbing and energy storage device applications. RSC. Adv. 4, 17039–17053 (2014)CrossRefGoogle Scholar
  31. 31.
    L. Pauling, The Nature of Chemical Bond, 3rd edn. (Oxford & IBH, Delhi, 1967)Google Scholar
  32. 32.
    A.K. Pattanaik, A. Srinivasan, Electrical and optical properties of amorphous PbXIn25−X Se75 films with a dispersion of nanocrystallites. J. Optoelectron. Adv. Mater. 5, 1161–1167 (2003)Google Scholar
  33. 33.
    J. Tauc, Amorphous and Liquid Semiconductors (Plenum Press, New York, 1974)CrossRefGoogle Scholar
  34. 34.
    A.N. Alias, Z.M. Zabidi, A.M.M. Ali, M.K. Harun, Optical characterization and properties of polymeric materials for optoelectronic and photonic applications. Appl. Sci. Tech. 3, 11–38 (2013)Google Scholar
  35. 35.
    H. Goktas, Z. Demircioglu, K. Sel, T. Gunes, I. Kaya, The optical properties of plasma polymerized polyaniline thin films. Thin Solid Films 548, 81–85 (2013)CrossRefGoogle Scholar
  36. 36.
    B. Choudhury, M. Dey, A. Choudhury, Defect generation, d–d transition, and band gap reduction in Cu-doped TiO2 nanoparticles. Int. Nano Lett. 3, 25 (2013)CrossRefGoogle Scholar
  37. 37.
    B. Urbach, N. Korbakov, Y. Bar-David, S. Yitzchaik, A. Sa’ar, Composite structures of polyaniline and mesoporous silicon: electrochemistry, optical and transport properties. J. Phys. Chem. C 111, 16586–16592 (2007)CrossRefGoogle Scholar
  38. 38.
    V.J. Babu, S. Vempati, S. Ramakrishna, Conducting polyaniline-electrical charge transportation. Mater. Sci. Appl. 4, 1–10 (2013)Google Scholar
  39. 39.
    M.R. Devi, B. Lawrence, N. Prithivikumaran, N. Jeyakumaran, Synthesis and characterization of conducting polymer polyaniline doped with salicylic acid. Chem. Tech. Res. 13, 5400–5403 (2014)Google Scholar
  40. 40.
    H. Kaouach, F. Hosni, M. Daoudi, A. Bardaoui, K. Farah, H. Hamzaoui, R. Chtourou, Effects of gamma irradiation on photoluminescence and activation energy of epoxy resin. Superlattice Microstruct. 55, 191–197 (2013)CrossRefGoogle Scholar
  41. 41.
    T.H. Gfroerer, Photoluminescence in analysis of surfaces and interfaces, in Encyclopedia of Analytical Chemistry, ed. by R.A. Meyers (Wiley, Chichester, 2000), pp. 9209–9231Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Nastaran Bafandeh
    • 1
  • Madjid Mojtahedzadeh Larijani
    • 2
  • Azizollah Shafiekhani
    • 3
    • 4
  • Mohammad Reza Hantehzadeh
    • 1
  • Nasrin Sheikh
    • 2
  1. 1.Department of Physics, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Radiation Applications Research SchoolNuclear Science and Technology Research InstituteTehranIran
  3. 3.School of PhysicsInstitute for Research in Fundamental SciencesTehranIran
  4. 4.Physics DepartmentAlzahra UniversityTehranIran

Personalised recommendations