Electric and magnetic properties of Y-type Ba2Mg2Fe12O22 hexaferrites with various Co doping



Y-type hexaferrites Ba2Mg2−x Co x Fe12O22 (x = 0.4, 0.8, 1.2, 1.6) were synthesized by solid state reaction method. The impedance spectrum, AC conductivity, and dielectric properties were investigated at various temperatures and in a wide range of frequency. The dielectric properties and AC conductivity have been explained on the basis of space charge polarization and the electric exchange between Fe3+ and Fe2+ as well as the hole hopping between Co2+ and Co3+ ions at octahedral side. The complex impedance analysis indicates the existence of space charge and the presence of electrical processes at increased temperatures. The change of the activation energy obtained from lnf max versus 1/T and lnσ dc versus 1/T plots indicated that with increasing Co content, the transport mechanisms at low and high temperatures are different. Two magnetic phase transitions were observed in these samples and their transition temperatures increased with increasing Co2+ doping. High Co content suppresses the second magnetic structure transition under an applied magnetic field. For all samples, the room temperature coercivity is less than 20 Oe, while the saturation magnetization increases with increasing Co content. The present work provides a fundamental understanding of the dielectric and conductivity mechanism of Mg2Y type hexaferrite, which is essential for microwave and electronic applications in the materials.


CoFe2O4 Solid State Reaction Method Magnetic Phase Transition Barium Ferrite Electric Exchange 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Z.W.L. thanks the Program for New Century Excellent Talents in University (Grant No. NCET-11-0156) and the Fundamental Research Funds for the Central Universities (Grant No. 2015ZP030). X.S.G. thanks the Natural Science Foundation of China (Grant Nos. 51031004, 51272078) and the Guangdong National Science Foundation (S2012010008124).


  1. 1.
    X. Huang, Y. Chen, J. Yu, J. Zhang, T. Sang, G. Tao, H. Zhu, J. Mater. Sci.: Mater. Electron. 26, 3474–3478 (2015)Google Scholar
  2. 2.
    X. Huang, J. Zhang, W. Rao, T. Sang, B. Song, C. Wong, J. Alloys Compd. 662, 409–414 (2016)CrossRefGoogle Scholar
  3. 3.
    X. Huang, J. Zhang, W. Wang, T. Sang, B. Song, H. Zhu, W. Rao, C. Wong, J. Magn. Magn. Mater. 405, 36–41 (2016)CrossRefGoogle Scholar
  4. 4.
    B. Li, Y. Shen, Z. Yue, C. Nan, J. Magn. Magn. Mater. 313, 322–328 (2007)CrossRefGoogle Scholar
  5. 5.
    R.A. Khan, S. Mizukami, A.M. Khan, B. Ismail, A.R. Khan, T. Miyazaki, J. Alloys Compd. 637, 197–202 (2015)CrossRefGoogle Scholar
  6. 6.
    X. Huang, J. Zhang, Z. Liu, T. Sang, B. Song, H. Zhu, C. Wong, J. Alloys Compd. 648, 1072–1075 (2015)CrossRefGoogle Scholar
  7. 7.
    J. Smit, H.P.J. Wijn, Ferrites (Philips’ Technical Library, Eindhoven, 1959)Google Scholar
  8. 8.
    Y. Bai, J. Zhou, Z. Gui, L. Li, J. Magn. Magn. Mater. 246, 140–144 (2002)CrossRefGoogle Scholar
  9. 9.
    H. Kwon, J. Shin, J. Oh, J. Appl. Phys. 75, 6109–6111 (1994)CrossRefGoogle Scholar
  10. 10.
    M. El Hiti, A.A. El Ata, J. Magn. Magn. Mater. 195, 667–678 (1999)CrossRefGoogle Scholar
  11. 11.
    A. Shaikh, S. Bellad, B. Chougule, J. Magn. Magn. Mater. 195, 384–390 (1999)CrossRefGoogle Scholar
  12. 12.
    M. Wu, W. Zhong, X. Gao, L. Liu, Z. Liu, J. Appl. Phys. 116, 224103 (2014)CrossRefGoogle Scholar
  13. 13.
    A.A. El Ata, S. Attia, J. Magn. Magn. Mater. 257, 165–174 (2003)CrossRefGoogle Scholar
  14. 14.
    G. Pires, H. Rodrigues, J. Almeida, E. Sancho, J. Góes, M. Costa, J. Denardin, A. Sombra, J. Alloys Compd. 493, 326–334 (2010)CrossRefGoogle Scholar
  15. 15.
    J.C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon Press, Oxford, 1881)Google Scholar
  16. 16.
    K. Wagner, Ann. Phys. 345, 817 (1913)CrossRefGoogle Scholar
  17. 17.
    C. Koops, Phys. Rev. 83, 121 (1951)CrossRefGoogle Scholar
  18. 18.
    M. El Hiti, J. Magn. Magn. Mater. 164, 187–196 (1996)CrossRefGoogle Scholar
  19. 19.
    S. Kamba, V. Goian, M. Savinov, E. Buixaderas, D. Nuzhnyy, M. Maryško, M. Kempa, V. Bovtun, J. Hlinka, K. Knížek, J. Appl. Phys. 107, 104109 (2010)CrossRefGoogle Scholar
  20. 20.
    S. Hirose, K. Haruki, A. Ando, T. Kimura, J. Am. Ceram. Soc. 98, 2104–2111 (2015)CrossRefGoogle Scholar
  21. 21.
    M. Costa, G.P. Júnior, A. Sombra, Mater. Chem. Phys. 123, 35–39 (2010)CrossRefGoogle Scholar
  22. 22.
    I. Ali, M. Islam, M.N. Ashiq, H.M. Khan, M.A. Iqbal, M. Najam-Ul-Haq, Mater. Res. Bull. 49, 338–344 (2014)CrossRefGoogle Scholar
  23. 23.
    I. Ali, M. Islam, M.N. Ashiq, M.A. Iqbal, M. Awan, S. Naseem, J. Alloys Compd. 599, 131–138 (2014)CrossRefGoogle Scholar
  24. 24.
    M. Irfan, M. Islam, I. Ali, M.A. Iqbal, N. Karamat, H.M. Khan, Curr. Appl. Phys. 14, 112–117 (2014)CrossRefGoogle Scholar
  25. 25.
    S. Ishiwata, Y. Taguchi, H. Murakawa, Y. Onose, Y. Tokura, Science 319, 1643–1646 (2008)CrossRefGoogle Scholar
  26. 26.
    K. Taniguchi, N. Abe, S. Ohtani, H. Umetsu, T.-H. Arima, Appl. Phys. Express 1, 031301 (2008)CrossRefGoogle Scholar
  27. 27.
    M. Wu, X. Gao, Z. Liu, J. Am. Ceram. Soc. 98, 2498–2502 (2015)CrossRefGoogle Scholar
  28. 28.
    A. Kumar, B. Singh, R. Choudhary, A.K. Thakur, Mater. Chem. Phys. 99, 150–159 (2006)CrossRefGoogle Scholar
  29. 29.
    B. Tiwari, R. Choudhary, J. Alloys Compd. 493, 1–10 (2010)CrossRefGoogle Scholar
  30. 30.
    M. Costa, G. Pires Jr., A. Terezo, M. Graca, A. Sombra, J. Appl. Phys. 110, 034107 (2011)CrossRefGoogle Scholar
  31. 31.
    S. Hussain, M. Anis-ur-Rehman, A. Maqsood, M. Awan, J. Cryst. Growth 297, 403–410 (2006)CrossRefGoogle Scholar
  32. 32.
    C. Ang, Z. Yu, L. Cross, Phys. Rev. B 62, 228 (2000)CrossRefGoogle Scholar
  33. 33.
    S. Hussain, A. Maqsood, J. Alloys Compd. 466, 293–298 (2008)CrossRefGoogle Scholar
  34. 34.
    G. Li, Z. Chen, X. Sun, L. Liu, L. Fang, B. Elouadi, Mater. Res. Bull. 65, 260–265 (2015)CrossRefGoogle Scholar
  35. 35.
    A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics Press, London, 1983)Google Scholar
  36. 36.
    L.I. Rabinkin, Z.I. Novikova, Ferrites. Minsk (1960), p. 146Google Scholar
  37. 37.
    K. Iwauchi, Jpn. J. Appl. Phys. 10, 1520 (1971)CrossRefGoogle Scholar
  38. 38.
    N. Rezlescu, E. Rezlescu, Phys. Status Solidi A 23, 575–582 (1974)CrossRefGoogle Scholar
  39. 39.
    N. Momozawa, Y. Yamaguchi, M. Mita, J. Phys. Soc. Jpn. 55, 1350–1358 (1986)CrossRefGoogle Scholar
  40. 40.
    H.B. Lee, S.H. Chun, K.W. Shin, B.-G. Jeon, Y.S. Chai, K.H. Kim, J. Schefer, H. Chang, S.-N. Yun, T.-Y. Joung, Phys. Rev. B 86, 094435 (2012)CrossRefGoogle Scholar
  41. 41.
    N. Momozawa, Y. Yamaguchi, H. Takei, M. Mita, J. Phys. Soc. Jpn. 54, 3895–3903 (1985)CrossRefGoogle Scholar
  42. 42.
    S. Ishiwata, D. Okuyama, K. Kakurai, M. Nishi, Y. Taguchi, Y. Tokura, Phys. Rev. B 81, 174418 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.Institute for Advanced Materials and Laboratory of Quantum Engineering and Quantum MaterialsSouth China Normal UniversityGuangzhouChina
  3. 3.Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Ministry of Education, College of Material Science and EngineeringGuilin University of TechnologyGuilinChina

Personalised recommendations