Nanostructured CaCu3Ti4O12 for environmental remediation through visible light active catalysis

  • Arindam Sen
  • Kalyan Kumar Chattopadhyay


The unresolved issue of generating well defined nanostructure of calcium copper titanate, a well-known dielectric perovskite, has been overcome through simple molten salt approach. This technique provides a one-step, convenient, low-cost, nontoxic, and mass-production route for the synthesis of nanostructures of complex oxides with important scientific and technological applications. The as-synthesized powder, characterized by powder X-ray diffraction, field emission scanning electron microscopy and high resolution transmission electron microscopy was confirmed to be a phase pure calcium copper titanate nanocubes with edge length around 180 nm having sharp edges. The photocatalytic activity of the as-prepared samples was evaluated by the degradation of methyl orange aqueous solution under visible light irradiation and exhibited higher dye degradation ability compared to its bulk counterpart. The enhanced photocatalytic activity could be attributed to increase in both the surface area as well as photo-generated carrier life time.


Photocatalytic Activity Methyl Orange BiVO4 Energy Dispersive Spectroscopic Multicomponent Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by the University Grants Commission, The Government of India [Ref. No. F.PSW-007/14-15(ERO) dated 02/02/2015 (XII plan)].


  1. 1.
    A. Fujishima, K. Honda, Nature 238, 37 (1972)CrossRefGoogle Scholar
  2. 2.
    Y. Liu, B. Zhou, J. Bai, J. Li, J. Zhang, Q. Zheng, X. Zhu, W. Cai, Appl. Catal. Environ. 89, 142 (2009)CrossRefGoogle Scholar
  3. 3.
    G.S. Li, D.Q. Zhang, J.C. Yu, Chem. Mater. 20, 3983 (2008)CrossRefGoogle Scholar
  4. 4.
    M. Shang, W. Wang, S. Sun, L. Zhou, L. Zhang, J. Phys. Chem. C 112, 10407 (2008)CrossRefGoogle Scholar
  5. 5.
    M. Machida, J. Yabunaka, T. Kijima, Chem. Mater. 12, 812 (2000)CrossRefGoogle Scholar
  6. 6.
    M. Maddahfar, M. Ramezani, M. Sadeghi, A. Sobhani-Nasab, J. Mater. Sci. Mater. Electron. 26, 7745 (2015)CrossRefGoogle Scholar
  7. 7.
    M. Ramezani, S. Mostafa Hosseinpour-Mashkani, A. Sobhani-Nasab, H.G. Estarki, J. Mater. Sci. Mater. Electron. 26, 7588 (2015)CrossRefGoogle Scholar
  8. 8.
    Z.B. Lei, W.S. You, M.Y. Liu, G.H. Zhou, T. Takata, M. Hara, K. Domen, C. Li, Chem. Commun. 17, 2142 (2003)CrossRefGoogle Scholar
  9. 9.
    M. Sun, Y. Jiang, F. Li, M. Xia, B. Xue, D. Liu, Mater. Transact. 51, 1981 (2010)CrossRefGoogle Scholar
  10. 10.
    J. Ding, X. Lü, H. Shu, J. Xie, H. Zhang, Mater. Sci. Eng., B 171, 31 (2010)CrossRefGoogle Scholar
  11. 11.
    M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)CrossRefGoogle Scholar
  12. 12.
    A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S.M. Shapiro, Solid State Commun. 115, 217 (2000)CrossRefGoogle Scholar
  13. 13.
    S.Y. Chung, I.D. Kim, S.J.L. Kang, Nat. Mater. 3, 774 (2004)CrossRefGoogle Scholar
  14. 14.
    I.D. Kim, A. Rothschild, T. Hyodo, H.L. Tuller, Nano Lett. 6, 193 (2006)CrossRefGoogle Scholar
  15. 15.
    R. Parra, R. Savu, L.A. Ramajo, M.A. Ponce, J.A. Varela, M.S. Castro, P.R. Bueno, E. Joanni, J. Solid State Chem. 183, 1209 (2010)CrossRefGoogle Scholar
  16. 16.
    C.L. Kretly, A.F.L. Almeida, P.B.A. Fechine, R.S. De Oliveira, A.S.B. Sombra, J. Mater. Sci. Mater. Electron. 15, 657 (2004)CrossRefGoogle Scholar
  17. 17.
    M. Li, X.L. Chen, D.F. Zhang, W.Y. Wang, W.J. Wang, Sens. Actuators, B 147, 447 (2010)CrossRefGoogle Scholar
  18. 18.
    R.K. Pandey, W.A. Stapleton, J. Tate, A.K. Bandyopadhyay, I. Sutanto, S. Sprissler, S. Lin, AIP Adv. 3, 062126 (2013)CrossRefGoogle Scholar
  19. 19.
    J.H. Clark, M.S. Dyer, R.G. Palgrave, C.P. Ireland, J.R. Darwent, J.B. Claridge et al., J. Am. Chem. Soc. 133, 1016 (2011)CrossRefGoogle Scholar
  20. 20.
    D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2003)CrossRefGoogle Scholar
  21. 21.
    M. Salavati-Niasari, S.M. Hosseinpour-Mashkani, F. Mohandes, S. Gholamrezaei, J. Mater. Sci. 26, 2810 (2015)Google Scholar
  22. 22.
    C. Masingboon, P. Thongbai, S. Maensiri, T. Yamwong, S. Seraphin, Mater. Chem. Phys. 109, 262 (2008)CrossRefGoogle Scholar
  23. 23.
    S. Mostafa Hosseinpour-Mashkani, M. Ramezani, A. Sobhani-Nasab, M. Esmaeili-Zare, J. Mater. Sci. Mater. Electron. 26, 6086 (2015)CrossRefGoogle Scholar
  24. 24.
    P.R. Bueno, R. Tararan, R. Parra, E. Joanni, M.A. Ramírez, W.C. Ribeiro, E. Longo, J.A. Varela, J. Phys. D Appl. Phys. 42, 055404 (2009)CrossRefGoogle Scholar
  25. 25.
    P. Kubelka, F. Munk, Zeitschrift für Technische Physik 12, 593 (1931)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of ElectronicsBankura Christian CollegeBankuraIndia
  2. 2.Thin Film and Nanoscience Laboratory, Department of PhysicsJadavpur UniversityKolkataIndia

Personalised recommendations