Electrocaloric effect and energy-storage performance in grain-size-engineered PBLZT antiferroelectric thick films

  • Hongcheng Gao
  • Xihong Hao
  • Qiwei Zhang
  • Shengli An
  • Ling Bing Kong


The effects of grain size on dielectric properties, energy-storage performance and electrocaloric effect (ECE) of Pb0.85Ba0.05La0.10(Zr0.90Ti0.10)O3 (PBLZT) antiferroelectric thick films were systematically studied. As the grain size was increased, dielectric constant of the thick films was increased, while their critical breakdown field was decreased. A giant reversible adiabatic temperature change of ∆T = 19.9 °C at room temperature was achieved in the PBLZT AFE thick film with a grain size of 0.59 µm. However, a huge recoverable energy-storage density of 33.6 J/cm3 and a high efficiency of 73 % were observed in the film with the smallest grain size of 0.19 µm at its breakdown field, because of its excellent electric field endurance. In addition, all the samples had a low leakage current density of below 10−6 A/cm2 at room temperature. These results indicated that our PBLZT AFE thick films could be a promising candidate for applications in high energy-storage density capacitors and solid-cooling devices by properly controlling their grain size.


Thick Film Leakage Current Density LaNiO3 Diffuse Phase Transition Adiabatic Temperature Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge the financial support by the Ministry of Sciences and Technology of China through 973-Project (2014CB660811), the National Natural Science Foundation of China (51462027), the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (NMGIRT-A1605), the Innovation Guide Fund of Baotou (CX2015-8) and the Innovation Program of Inner Monglia University of Science and Technology (2014QNGG01).


  1. 1.
    C. Kittel, Theory of antiferroelectric crystal. Phys. Rev. 82, 729–732 (1951)CrossRefGoogle Scholar
  2. 2.
    E. Sawaguchi, H. Maniwa, S. Hoshino, Antiferroelectric structure of lead zirconate. Phys. Rev. 83, 1078 (1951)CrossRefGoogle Scholar
  3. 3.
    G. Shirane, E. Sawaguchi, Y. Takagi, Dielectric properties of lead zirconate. Phys. Rev. 84, 476–481 (1951)CrossRefGoogle Scholar
  4. 4.
    X.H. Hao, Y. Wang, L. Zhang, L.W. Zhang, S.L. An, Composition-dependent dielectric and energy-storage properties of (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric thick films. Appl. Phys. Lett. 102, 163903 (2013)CrossRefGoogle Scholar
  5. 5.
    Z. Liu, X.F. Chen, W. Peng, C.H. Xu, X.L. Dong, F. Cao, G.S. Wang, Temperature-dependent stability of energy storage properties of Pb0.97La0.02(Zr0.58Sn0.335Ti0.085)O3 antiferroelectric ceramics for pulse power capacitors. Appl. Phys. Lett. 106, 262901 (2015)CrossRefGoogle Scholar
  6. 6.
    Z.K. Xu, J.W. Zhai, W.H. Chan, Phase transformation and electric field tunable pyroelectric behavior of Pb(Nb, Zr, Sn, Ti)O3 and (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric thin films. Appl. Phys. Lett. 88, 132908 (2006)CrossRefGoogle Scholar
  7. 7.
    S.S. Sengupta, D. Roberts, J.F. Li, M.C. Kim, D.A. Payne, Field-induced phase switching and electrical deiven strains in sol-gel derived antiferroelectric (Pb, Nb)(Zr, Sn, Ti)O3 thin films. J. Appl. Phys. 78, 1171–1177 (1995)CrossRefGoogle Scholar
  8. 8.
    Y. Zhao, X.H. Hao, Q. Zhang, Energy-storage properties and electrocaloric effect of Pb(1−3x/2)LaxZr0.85Ti0.15O3 antiferroelectric thick films. ACS Appl. Mater. Interfaces 6, 11633–11639 (2014)CrossRefGoogle Scholar
  9. 9.
    X.H. Hao, J.W. Zhai, L.B. Kong, Z.K. Xu, A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Prog. Mater. Sci. 63, 1–57 (2014)CrossRefGoogle Scholar
  10. 10.
    J. Ge, X.L. Dong, Y. Chen, F. Cao, G.S. Wang, Enhanced polarization switching and energy storage properties of Pb0.97La0.02(Zr0.95Ti0.05)O3 antiferroelectric thin films with LaNiO3 oxide top Electrodes. Appl. Phys. Lett. 102, 142905 (2013)CrossRefGoogle Scholar
  11. 11.
    M. Valant, Electrocaloric materials for future solid-state refrigeration technologies. Prog. Mater. Sci. 57, 980–1009 (2012)CrossRefGoogle Scholar
  12. 12.
    G.Z. Zhang, D.Y. Zhu, X.S. Zhang, L. Zhang, J.Q. Yi, B. Xie, Y.K. Zeng, Q. Li, Q. Wang, S.L. Jiang, High-energy storage performance of (Pb0.87Ba0.1La0.02)(Zr0.68Sn0.24Ti0.08)O3 antiferroelectric ceramics fabricated by the hot-press sintering method. J. Am. Ceram. Soc. 4, 1175–1181 (2015)CrossRefGoogle Scholar
  13. 13.
    B.A. Tuttle, D.A. Payne, The effects of microstructure on the electrocaloric properties of Pb(Zr, Sn, Ti)O3 ceramics. Ferroelectrics 37, 603–606 (1981)CrossRefGoogle Scholar
  14. 14.
    Z.Q. Hu, B.H. Ma, R.E. Koritala, U. Balachandran, Temperature-dependent energy storage properties of antiferroelectric Pb0.96La0.04Zr0.98Ti0.02O3 thin films. Appl. Phys. Lett. 104, 263902 (2014)CrossRefGoogle Scholar
  15. 15.
    J. Parui, S.B. Krupanidhi, Electroaloric effect in antiferroelectric PbZrO3 thin films. Phys. Status Solidi RRL 2, 230–232 (2008)CrossRefGoogle Scholar
  16. 16.
    X.F. Chen, F. Cao, H.L. Zhang, G. Yu, G.S. Wang, X.L. Dong, Y. Gu, H.L. He, Y.S. Liu, Dynamic hysteresis and scaling behavior of energy density in dynamic hysteresis and scaling behavior of energy density in Pb0.99Nb0.02[(Zr0.60Sn0.40)0.95Ti0.05]O3 Antiferroelectric bulk ceramics. J. Am. Ceram. Soc. 4, 1163–1166 (2012)CrossRefGoogle Scholar
  17. 17.
    S. Kar-Narayan, N.D. Mathur, Predicted cooling powers for multilayer capacitors based on various electrocaloric and electrode materials. Appl. Phys. Lett. 95, 242903 (2009)CrossRefGoogle Scholar
  18. 18.
    J. Ge, D. Remiens, J. Costecalde, Y. Chen, X.L. Dong, G.S. Wang, Effect of residual stress on energy storage property in PbZrO3 antiferroelectric thin films with different orientations. Appl. Phys. Lett. 103, 162903 (2013)CrossRefGoogle Scholar
  19. 19.
    B.L. Peng, H.Q. Fan, Q. Zhang, A. Giant, Electrocaloric effect in nanoscale antiferroelectric and ferroelectric phases coexisting in a relaxor Pb0.8Ba0.2ZrO3 thin film at room temperature. Adv. Funct. Mater. 23, 2987–2992 (2013)CrossRefGoogle Scholar
  20. 20.
    X.H. Hao, J.W. Zhai, Electric-field tunable electrocaloric effects from phase transition between antiferroelectric and ferroelectric phase. Appl. Phys. Lett. 104, 022902 (2014)CrossRefGoogle Scholar
  21. 21.
    J. Ge, G. Pan, D. Remiens, Y. Chen, F. Cao, X.L. Dong, G.S. Wang, Effect of electrode materials on the scaling behavior of energy density in Pb(Zr0.96Ti0.03)Nb0.01O3 antiferroelectric films. Appl. Phys. Lett. 101, 112905 (2012)CrossRefGoogle Scholar
  22. 22.
    B.L. Peng, Q. Zhang, X. Li, T.Y. Sun, H.Q. Fan, S.M. Ke, M. Ye, Y. Wang, W. Lu, H.B. Niu, J.F. Scott, X.R. Zeng, H.T. Huang, Giant electric energy density in epitaxial lead-free thin films with coexistence of ferroelectrics and antiferroelectrics. Adv. Electron. Mater. 1, 1–7 (2015)CrossRefGoogle Scholar
  23. 23.
    F.L. Goupil, A.K. Axelsson, L.J. Dunne, M. Valant, G. Manos, T. Lukasiewicz, J. Dec, A. Berenov, N.M. Alford, Anisotropy of the electrocaloric effect in lead-free relaxor ferroelectrics. Adv. Energy Mater. 4, 1301688 (2014)CrossRefGoogle Scholar
  24. 24.
    L. Zhang, S.L. Jiang, Y.K. Zeng, M. Fu, K. Han, Q. Li, Q. Wang, G.Z. Zhang, Y doping and grain size co-effects on the electrical energy storage performance of (Pb0.87Ba0.1La0.02)(Zr0.65Sn0.3Ti0.05)O3 anti-ferroelectric ceramics. Ceram. Int. 40, 5455–5460 (2014)CrossRefGoogle Scholar
  25. 25.
    J.H. Qiu, Q. Jiang, Grain size effect on the electrocaloric effect of dense BaTiO3 nanoceramics. J. Appl. Phys. 105, 034110 (2009)CrossRefGoogle Scholar
  26. 26.
    C. Fang, D.X. Zhou, S.P. Gong, Core-shell structure and size effect in barium titanate nanoparticle. Phys. B 406, 1317–1322 (2011)CrossRefGoogle Scholar
  27. 27.
    M. Vrabelj, H. Uršič, Z. Kutnjak, B. Rožič, S. Drnovšek, A. Benčan, V. Bobnar, L. Fulanović, B. Malič, Large electrocaloric effect in grain-size-engineered 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3. J. Eur. Ceram. Soc. 36, 75–80 (2016)CrossRefGoogle Scholar
  28. 28.
    H.F. Ji, W. Ren, L.Y. Wang, P. Shi, X.F. Chen, X.Q. Wu, X. Yao, S.T. Lau, Q.F. Zhou, K.K. Shung, Structure and electrical properties of Na0.5Bi0.5TiO3 ferroelectric thick films derived from a polymer modified sol–gel method. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 2042–2049 (2011)CrossRefGoogle Scholar
  29. 29.
    J.W. Zhai, X. Li, Y. Yao, H. Chen, Growth and characterization of PNZST thin films. Mater. Sci. Eng., B 99, 230–233 (2003)CrossRefGoogle Scholar
  30. 30.
    J.K. Li, X. Yao, Microstructure and electrical properties of Pb(Zr0.52Ti0.48)O3 ferroelectric films on different bottom electrodes. Mater. Lett. 58, 3447–3450 (2004)CrossRefGoogle Scholar
  31. 31.
    X.H. Hao, Y. Zhao, Q. Zhang, Phase structure tuned electrocaloric effect and pyroelectric energy harvesting performance of (Pb0.97La0.02)(Zr, Sn, Ti)O3 antiferroelectric thick films. J. Phys. Chem. C 119, 18877–18885 (2015)CrossRefGoogle Scholar
  32. 32.
    C.R. Cho, W.J. Lee, B.G. Yu, B.W. Kim, Dielectric and ferroelectric response as a function of annealing temperature and film thickness of sol-gel deposited PbZr0.52Ti0.48O3 thin film. J. Appl. Phys. 86, 2700–2711 (1999)CrossRefGoogle Scholar
  33. 33.
    J. Yu, X.J. Meng, J.L. Sun, Z.M. Huang, J.H. Chu, Optical and electrical properties of highly (100)-oriented PbZr1−xTixO3 thin films on the LaNiO3 buffer layer. J. Appl. Phys. 96, 2792–2799 (2004)CrossRefGoogle Scholar
  34. 34.
    C. Bhardwaj, B.S.S. Daniela, D. Kaur, Pulsed laser deposition and characterization of highly tunable (1−x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 thin films grown on LaNiO3/Si substrate. J. Phys. Chem. Solids 74, 94–100 (2013)CrossRefGoogle Scholar
  35. 35.
    S.B. Kang, M.G. Choi, D.J. Jeong, Energy storage properties of nano-grained antiferroelectric (Pb, La)(Zr, Ti)O3 films prepared by aerosol-deposition method. IEEE Trans. Dielect. Electr. Insul. 22, 1477–1482 (2015)CrossRefGoogle Scholar
  36. 36.
    J.S. Lee, S.K. Joo, Analysis of grain-boundary effects on the electrical properties of Pb(Zr, Ti)O3 thin films. Appl. Phys. Lett. 81, 2602–2604 (2002)CrossRefGoogle Scholar
  37. 37.
    X.G. Tang, H.L.W. Chan, Effect of grain size on the electrical properties of (Ba, Ca)(Zr, Ti)O3 relaxor ferroelectric ceramic. J. Appl. Phys. 97, 034109 (2005)CrossRefGoogle Scholar
  38. 38.
    X.G. Tang, K.H. Chew, H.L.W. Chan, Diffuse phase transition and dielectric tunability of Ba(ZryTi1−y)O3 relaxor ferroelectric ceramics. Acta Mater. 52, 5177–5183 (2004)CrossRefGoogle Scholar
  39. 39.
    B. Pokharela, D. Pandey, Dielectric studies of phase transitions in (Pb1−xBax)ZrO3. J. Appl. Phys. 88, 5364–5373 (2000)CrossRefGoogle Scholar
  40. 40.
    K. Uchino, S. Nomura, Critical exponents of the dielectric costants in diffused-phase-transition crystals. Ferroelectrics 44, 55–61 (1982)CrossRefGoogle Scholar
  41. 41.
    V.S. Tiwari, N. Singh, D. Pandey, Diffuse ferroelectric transition and relaxational dipolar freezing in (Ba, Sr)TiO3. J. Phys. Condens. Matter. 7, 1441–1460 (1995)CrossRefGoogle Scholar
  42. 42.
    W.L. Zhao, R.Z. Zuo, D.G. Zheng, L.T. Li, Dielectric relaxor evolution and frequency-insensitive giant strains in (Bi0.5Na0.5)TiO3–Modified Bi(Mg0.5Ti0.5)O3–PbTiO3 Ferroelectric Ceramics. J. Am. Ceram. Soc. 97, 1855–1860 (2014)CrossRefGoogle Scholar
  43. 43.
    K. Wen, J.H. Qiu, H.L. Ji, K.J. Zhu, J.S. Liu, J. Wang, J.Z. Du, F.L. Zhu, Investigation of phase diagram and electrical properties of xPb(Mg1/3Nb2/3)O3–(1 − x)Pb(Zr0.4Ti0.6)O3 ceramics. J. Mater. Sci. Mater. Electron. 25, 3003–3009 (2014)CrossRefGoogle Scholar
  44. 44.
    A.S. Mischenko, Q. Zhang, J.F. Scott, R.W. Whatmore, N.D. Mathur, Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science 311, 1270–1271 (2006)CrossRefGoogle Scholar
  45. 45.
    T. Mitsui, I. Tatsuzaki, E. Nakamura, An Introduction to the Physics of Ferroelectrics (Gordon and Breach, London, 1976)Google Scholar
  46. 46.
    S.G. Lu, Q.M. Zhang, Electrocaloric materials for solid-state refrigeration. Adv. Mater. 21, 1983–1987 (2009)CrossRefGoogle Scholar
  47. 47.
    E. Defay, S. Crossley, S. Kar-Narayan, X. Moya, N.D. Mathur, The electrocaloric efficiency of ceramic and polymer films. Adv. Mater. 25, 3337–3342 (2013)CrossRefGoogle Scholar
  48. 48.
    J. Hagberg, A. Uusimäki, H. Jantunen, Electrocaloric characteristics in reactive sintered 0.87Pb(Mg1/3Nb2/3)O3–0.13 PbTiO3. Appl. Phys. Lett. 92, 132909 (2008)CrossRefGoogle Scholar
  49. 49.
    Y. Bai, X. Han, L.J. Qiao, Optimized electrocaloric refrigeration capacity in lead-free (1 − x)BaZr0.2Ti0.8O3–xBa0.7Ca0.3TiO3 ceramics. Appl. Phys. Lett. 103, 202903 (2013)CrossRefGoogle Scholar
  50. 50.
    X.Q. Liu, T.T. Chen, Y.J. Wu, X.M. Chen, Enhanced electrocaloric effects in spark plasma-sintered Ba0.65Sr0.35TiO3-based ceramics at room temperature. J. Am. Ceram. Soc. 96, 1021–1023 (2013)CrossRefGoogle Scholar
  51. 51.
    S. Lu, B. Rožič, Q.M. Zhang, Z. Kutnjak, X.Y. Li, E. Furman, L.J. Gorny, M. Lin, B. Malič, M. Kosec, R. Blinc, R. Pirc, Organic and inorganic relaxor ferroelectrics with giant electrocaloric effect. Appl. Phys. Lett. 97, 162904 (2010)CrossRefGoogle Scholar
  52. 52.
    S.G. Lu, B. Rozic, Q.M. Zhang, Z. Kutnjak, R. Pirc, Electrocaloric effect in ferroelectric polymers. Appl. Phys. A Mater. 107, 559–566 (2012)CrossRefGoogle Scholar
  53. 53.
    M. Lines, A. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977)Google Scholar
  54. 54.
    S. Kar-Narayan, N.D. Mathur, Direct and indirect electrocaloric measurements using multilayer capacitors. J. Phys. D Appl. Phys. 43, 032002 (2010)CrossRefGoogle Scholar
  55. 55.
    X. Moya, E. Stern-Taulats, S. Crossley, D. González-Alonso, S. Kar-Narayan, A. Planes, L. Mañosa, N.D. Mathur, Giant electrocaloric strength in single-crystal BaTiO3. Adv. Mater. 25, 1360–1365 (2013)CrossRefGoogle Scholar
  56. 56.
    B.J. Chu, X. Zhou, K.L. Ren, B. Neese, M.R. Lin, Q. Wang, F. Bauer, Q.M. Zhang, A dielectric polymer with high electric energy density and fast discharge speed. Science 313, 334–336 (2006)CrossRefGoogle Scholar
  57. 57.
    Z.B. Shen, X.H. Wang, B.C. Luo, L.T. Li, BaTiO3–BiYbO3 perovskite materials for energy storage applications. J. Mater. Chem. A 3, 18146–18153 (2015)CrossRefGoogle Scholar
  58. 58.
    B.L. Peng, Q. Zhang, X. Li, T.Y. Sun, H.Q. Fan, S.M. Ke, M. Ye, Y. Wang, W. Lu, H.B. Niu, X.R. Zeng, H.T. Huang, Large energy storage density and high thermal stability in a highly textured (111)-oriented Pb0.8Ba0.2ZrO3 Relaxor thin film with the coexistence of antiferroelectric and ferroelectric phases. ACS Appl. Mater. Interfaces 7, 13512–13517 (2015)CrossRefGoogle Scholar
  59. 59.
    M.H. Park, Y.H. Lee, H.J. Kim, Y.J. Kim, T. Moon, K.D. Kim, J. Müller, A. Kersch, U. Schroeder, T. Mikolajick, C.S. Hwang, ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv. Mater. 27, 1811–1831 (2015)CrossRefGoogle Scholar
  60. 60.
    Y. Zhao, X.H. Hao, M. Li, Dielectric properties and energystorage performance of (Na0.5Bi0.5)TiO3 thick films. J. Alloys Compd. 601, 112–115 (2014)CrossRefGoogle Scholar
  61. 61.
    Y. Wang, Y.C. Chan, Z.L. Gui, D.P. Webb, L.T. Li, Application of weibull distribution analysis to the dielectric failure of multilayer ceramic capacitors. Mater. Sci. Eng. B 47, 197–203 (1997)CrossRefGoogle Scholar
  62. 62.
    X.L. Wang, L. Zhang, X.H. Hao, S.L. An, High energy-storage performance of 0.9Pb(Mg1/3Nb2/3)O3–0.1PbTiO3 relaxor ferroelectric thin films prepared by RF magnetron sputterin. Mater. Res. Bull. 65, 73–79 (2015)CrossRefGoogle Scholar
  63. 63.
    S. Tong, B.H. Ma, M. Narayanan, S.S. Liu, R.E. Koritala, U. Balachandran, D.L. Shi, Lead lanthanum zirconate titanate ceramic thin films for energy storage. ACS Appl. Mater. Interfaces 5, 1474–1480 (2013)CrossRefGoogle Scholar
  64. 64.
    B.H. Ma, S. Chao, M. Narayanan, S.S. Liu, S. Tong, R.E. Koritala, U. Balachandran, Dense PLZT films grown on nickel substrates by PVP-modified sol–gel method. J. Mater. Sci. 48, 1180–1185 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Hongcheng Gao
    • 1
  • Xihong Hao
    • 1
  • Qiwei Zhang
    • 1
  • Shengli An
    • 1
  • Ling Bing Kong
    • 2
  1. 1.School of Materials and MetallurgyInner Mongolia University of Science and TechnologyBaotouChina
  2. 2.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations