Effects of thickness and deposition temperature of ALD ZnO on the performance of inverted polymer solar cells



In this paper, we fabricated atomic layer deposition (ALD) ZnO films to modify indium tin oxide (ITO) electrode for the purpose of the efficient and stable inverted polymer solar cells (PSCs). The role of thickness and the deposition temperature of ZnO layer on the performance of the device was investigated. The results showed that more than 10 nm of ALD ZnO film was required to improve the photovoltaic performance of PSCs. When the deposition temperatures of the ZnO films were varied from 60, 110 to 190 °C, the chemical compositions, the crystal orientations and the mobility of the ZnO films were quite different, while, the work functions of modified ITOs were similar. It was found that the ZnO film could reduce the work function of ITO and turn it into an electron-collecting electrode. The performances of inverted polymer solar cells with the ZnO films deposited at different temperature were identical. We then concluded that the work function of thin ZnO played a crucial role when nano-thickness of ALD ZnO was used as the electron transport layer. As a result, the ALD ZnO films showed a promising interface layer for achieving air-stable plastic cells with roll-to-roll mass production potential.


Root Mean Square Deposition Temperature Atomic Layer Deposition Polymer Solar Cell Ultraviolet Photoelectron Spectroscopy 



This work is supported by BIGC Project (No.23190114030, 27170115004/043) and Science and technology project of Beijing Municipal Education Commission (18190115/013).

Supplementary material

10854_2016_5105_MOESM1_ESM.docx (406 kb)
Supplementary material 1 (DOCX 406 kb)


  1. 1.
    G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science 270, 1789–1791 (1995)CrossRefGoogle Scholar
  2. 2.
    P. Peumans, A. Yakimov, S.R. Forrest, J. Appl. Phys. 93, 3693–3723 (2003)CrossRefGoogle Scholar
  3. 3.
    F.C. Krebs, Sol. Energy Mater. Sol. Cells 93, 394–412 (2009)CrossRefGoogle Scholar
  4. 4.
    M. Helgesen, R. Søndergaard, F.C. Krebs, J. Mater. Chem. 20, 36–60 (2010)CrossRefGoogle Scholar
  5. 5.
    S.R. Cowan, N. Banerji, W.L. Leong, A.J. Heeger, Adv. Funct. Mater. 22, 1116–1128 (2012)CrossRefGoogle Scholar
  6. 6.
    S. Ochiai, M. Uchiyama, S. Kannappan, R. Jayaraman, P.K. Shin, Trans. Electr. Electron. Mater. 13, 43–46 (2012)CrossRefGoogle Scholar
  7. 7.
    M.C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Adv. Mater. 18, 789–794 (2006)CrossRefGoogle Scholar
  8. 8.
    M. Jørgensen, K. Norrman, S.A. Gevorgyan, T. Tromholt, B. Andreasen, F.C. Krebs, Adv. Mater. 24, 580–612 (2012)CrossRefGoogle Scholar
  9. 9.
    J.S. Kim, R.H. Friend, F. Cacialli, Appl. Phys. Lett. 74, 3084–3086 (1999)CrossRefGoogle Scholar
  10. 10.
    K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D.D.C. Bradley, J.R. Durrant, Sol. Energy Mater. Sol. Cells 90, 3520–3530 (2006)CrossRefGoogle Scholar
  11. 11.
    M.P. de Jong, L.J. van Ijzendoorn, M.J.A. de Voigt, Appl. Phys. Lett. 77, 2255–2257 (2000)CrossRefGoogle Scholar
  12. 12.
    K.W. Wong, H.L. Yip, Y. Luo, K.Y. Wong, W.M. Lau, K.H. Low, H.F. Chow, Z.Q. Gao, W.L. Yeung, C.C. Chang, Appl. Phys. Lett. 80, 2788–2790 (2002)CrossRefGoogle Scholar
  13. 13.
    S.K. Hau, H.L. Yip, N.S. Baek, J.Y. Zou, K.O. Malley, A.K.Y. Jen, Appl. Phys. Lett. 92, 253301–253303 (2008)CrossRefGoogle Scholar
  14. 14.
    T.B. Yang, W.Z. Cai, D.H. Qin, E. Wang, L.F. Lan, X. Gong, J.B. Peng, Y. Cao, J. Phys. Chem. C 114(14), 6849–6853 (2010)CrossRefGoogle Scholar
  15. 15.
    S. Schumann, R.D. Campo, B. Illy, A.C. Cruickshank, M.A. McLachlan, M.P. Ryan, D.J. Riley, D.W. McComb, T.S. Jones, J. Mater. Chem. 21, 2381–2386 (2011)CrossRefGoogle Scholar
  16. 16.
    Y.H. Zhou, F.H. Li, S. Barrau, W.J. Tian, O. Inganäs, F.L. Zhang, Sol. Energy Mater. Sol. Cells 93, 497–500 (2009)CrossRefGoogle Scholar
  17. 17.
    Y.H. Zhou, H. Cheun, W.J. Potscavage Jr., C. Fuentes-Hernandez, S.J. Kim, B. Kippelen, J. Mater. Chem. 20, 6189–6194 (2010)CrossRefGoogle Scholar
  18. 18.
    F.C. Chen, J.L. Wu, K.H. Hsieh, W.C. Chen, S.W. Lee, Org. Electron. 9, 1132–1135 (2008)CrossRefGoogle Scholar
  19. 19.
    F.C. Chen, J.L. Wu, S.S. Yang, K.H. Hsieh, W.C. Chen, J. Appl. Phys. 103, 103721–103725 (2008)CrossRefGoogle Scholar
  20. 20.
    S.H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc, K. Lee, A.J. Heeger, Nat. Photonics 3, 297–303 (2009)CrossRefGoogle Scholar
  21. 21.
    J.Y. Kim, S.H. Kim, H.H. Lee, K. Lee, W.L. Ma, X. Gong, A.J. Heeger, Adv. Mater. 18, 572–576 (2006)CrossRefGoogle Scholar
  22. 22.
    Z.Q. Liang, Q.F. Zhang, O. Wiranwetchayan, J.T. Xi, Z. Yang, K. Park, C.D. Li., G.Z. Cao. Adv. Funct. Mater. 22, 2194–2201 (2012)CrossRefGoogle Scholar
  23. 23.
    M.S. White, D.C. Olson, S.E. Shaheen, N. Kopidakis, D.S. Ginley, Appl. Phys. Lett. 89, 143517–143519 (2006)CrossRefGoogle Scholar
  24. 24.
    Z.L. Yuan, J.S. Yu, N.N. Wang, Y.D. Jiang, J. Mater. Sci.: Mater. Electron. 22, 1730–1735 (2011)Google Scholar
  25. 25.
    T.S. Senthil, N. Muthukumarasamy, Misook. Kang, J. Mater. Sci: Mater Electron. 24, 3963-3969 (2013)Google Scholar
  26. 26.
    N. Sekine, C.H. Chou, W.L. Kwan, Y. Yang, Org. Electron. 10, 1473–1477 (2009)CrossRefGoogle Scholar
  27. 27.
    J.C. Wang, W.T., Weng, M.Y. Tsai, M.K. Lee, S.F. Horng, T.P. Perng; C.C. Kei; C.C. Yu; H.F. Meng. J. Mater. Chem. 20, 862–866 (2010)CrossRefGoogle Scholar
  28. 28.
    R.L.Z. Hoye, D.M. Rojas, D.C. Iza, K.P. Musselman, J.L.M.M. Driscoll, Sol. Energy Mater. Sol. Cells 116, 197–202 (2013)CrossRefGoogle Scholar
  29. 29.
    Z.Q. Liang, Q.F. Zhang, O. Wiranwetchayan, J.T. Xi, Z. Yang, K. Park, C.D. Li, G.Z. Cao, Adv. Funct. Mater. 22, 2194–2201 (2012)CrossRefGoogle Scholar
  30. 30.
    X.Q. Meng, C.T. Yang, W.J. Fu, J. Wan, Mater. Lett. 83, 179–182 (2012)CrossRefGoogle Scholar
  31. 31.
    S.H.K. Park, C.S. Hwang, H.S. Kwack, J.H. Lee, H.Y. Chu, Electrochem. Solid-State Lett. 9(10), G299–G301 (2006)CrossRefGoogle Scholar
  32. 32.
    S. Jeon, S. Bang, S. Lee, S. Kwon, W. Jeong, H. Jeon, H.J. Chang, H.H. Park, J. Electrochem. Soc. 155(10), H738–H743 (2008)CrossRefGoogle Scholar
  33. 33.
    C.H. Ahn, S.Y. Lee, H.K. Cho, Thin Solid Films 545, 106–110 (2013)CrossRefGoogle Scholar
  34. 34.
    S.Y. Pung, K.L. Choy, X.H Hou, C.X. Shan, Nanotechnology. 19, 435609(1-8) (2008)Google Scholar
  35. 35.
    R. Al-Gaashani, S. Radiman, A.R. Daud, N. Tabet, Y. Al-Douri, Ceram. Int. 39, 2283–2292 (2013)CrossRefGoogle Scholar
  36. 36.
    A. Sharma, D.S.E. Watkins, G. Andersson, Energy Technol. 2, 462–468 (2014)CrossRefGoogle Scholar
  37. 37.
    A.K.K. Kyam, X.W. Sun, C.Y. Jiang, G.Q. Lo, D.W. Zhao, D.L. Kwong, Appl. Phys. Lett. 93, 221107 (2008)Google Scholar
  38. 38.
    H. Cheun, C. Fuentes-Hernandez, Y.H. Zhou, W.J. Potscavage Jr., S.J. Kim, J. Shim, A. Dindar, B. Kippelen, J. Phys. Chem. C 114, 20713–20718 (2010)CrossRefGoogle Scholar
  39. 39.
    G.K. Long, X.J. Wan, B. Kan, Z.C. Hu, X. Yang, Y. Zhang, M.T. Zhang, H.B. Wu, F. Huang, S.J. Su, Y. Cao, Y.S. Chen, ChemSusChem 7(8), 2358–2364 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Laboratory of Plasma Physics and MaterialsBeijing Institute of Graphic CommunicationBeijingChina

Personalised recommendations