Controlled synthesis and magnetic properties of thin CeO2 nanotubes by a facile template-free hydrothermal method

  • Xiaofei Niu
  • Ming Li
  • Bo Wu
  • Hengzheng Li


Uniform CeO2 nano-octahedrons and the straw-like CeO2 nanostructures assembled by numerous thin nanotubes have been successfully synthesized by a facile one-step hydrothermal synthesis route only using Ce(NO3)3·6H2O as cerium resource, Na3PO4·6H2O as mineralizer and no surfactant or template. The reaction time was systematically investigated. XRD, SEM, TEM, XPS, Raman scattering, Photoluminescence spectra and M-H curves were employed to characterize the samples. The results showed that both CeO2 nano-octahedrons and nanotubes owned a fluorite cubic structure and the octahedrons-like structures gradually transform into nanotubes with the increase of the reaction time. The possible formation mechanism based on nucleation-dissolution–recrystallization of nanoparticles was proposed. It is found that there are Ce3+ ions and oxygen vacancies in surface of samples. All the samples exhibited similar emission peaks of room temperature photoluminescence and the emission intensity increases with the increase of concentration of oxygen vacancies. The M-H curves of CeO2 nano-octahedrons and nanotubes exhibit excellent room-temperature ferromagnetism, which is likely attributed to the effects of the Ce3+ ions and oxygen vacancies.


CeO2 Oxygen Vacancy Na3PO4 CeO2 Nanoparticles CePO4 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Natural Science Foundation of China (Nos. 51072002 and 51272003), Outstanding Young Talents Funded Projects of Suzhou University(Grant Nos. 2014XQNRL010), and the Natural Science Research Fund of Anhui Provincial Department of Education(KJ2016A775).


  1. 1.
    J. Li, H.Q. Fan, X.H. Jia, J. Phys. Chem. C 114, 14684 (2010)CrossRefGoogle Scholar
  2. 2.
    L.N. Wang, F.M. Meng, K.K. Li, F. Lu, Appl. Surf. Sci. 286, 269 (2013)CrossRefGoogle Scholar
  3. 3.
    B. Xu, Q.T. Zhang, S.S Yuan, M. Zhang, and T. Ohno. Chem. Eng. J. 260, 126 (2015)CrossRefGoogle Scholar
  4. 4.
    R.C. Rao, M. Yang, C.S. Li, H.Z. Dong, S. Fang, A.M. Zhang, J. Mater. Chem. A 3, 782 (2015)CrossRefGoogle Scholar
  5. 5.
    S. Iijima, Nature 354, 56 (1991)CrossRefGoogle Scholar
  6. 6.
    C. Wan, D.G. Cheng, F.Q. Chen, X.L. Zhan, Chem. Commun. 51, 9785 (2015)CrossRefGoogle Scholar
  7. 7.
    N.S. Arul, D. Mangalaraj, T.W. Kim, Appl. Surf. Sci. 349, 459 (2015)CrossRefGoogle Scholar
  8. 8.
    Y. Chen, G. Yang, Z.H. Jing, Mater. Lett. 176, 290 (2016)CrossRefGoogle Scholar
  9. 9.
    J.S. Wu, J.S. Wang, Y.C. Du, H.Y. Li, Y.L. Yang, X.J. Jia, Appl. Catal. B: Environ. 174–175, 435 (2015)CrossRefGoogle Scholar
  10. 10.
    J. Zhang, H. Kumagai, K. Yamamura, S. Ohara, S. Takami, A. Morikawa, H. Shinjoh, K. Kaneko, T. Adschiri, A. Suda, Nano Lett. 11, 361 (2011)CrossRefGoogle Scholar
  11. 11.
    D.S. Zhang, X.J. Du, L.Y. Shi, R.H. Gao, Dalton Trans. 41, 14455 (2012)CrossRefGoogle Scholar
  12. 12.
    I. Singh, A. Chandra, Int. J. Hydrog. Energy 41, 1913 (2016)CrossRefGoogle Scholar
  13. 13.
    N. Izu, T. Itoh, M. Nishibori, I. Matsubara, W. Shin, Sens. Actuators. B-Chem. 171, 350 (2012)CrossRefGoogle Scholar
  14. 14.
    He Li, G.F. Wang, F. Zhang, Y. Cai, Y.D. Wang, and I. Djerd, RSC. Advances. 2, 12413 (2012)Google Scholar
  15. 15.
    J. Qi, K. Zhao, G.D. Li, Y. Gao, H.J. Zhao, R.B. Yu, Z.Y. Tang, Nanoscale 6, 4072 (2014)CrossRefGoogle Scholar
  16. 16.
    Z. Yang, D. Han, D. Ma, H. Liang, L. Liu, Y. Yang, Cryst. Growth Des. 10, 291 (2010)CrossRefGoogle Scholar
  17. 17.
    J. Wei, Z. Yang, H. Yang, T. Sun, Y. Yang, Cryst. Eng. Comm. 13, 4950 (2011)CrossRefGoogle Scholar
  18. 18.
    H. Imagawa, S.H. Sun, J. Phys. Chem. C 116, 2761 (2012)CrossRefGoogle Scholar
  19. 19.
    Z. Guo, F. Du, G. Li, Z. Cui, Cryst. Growth Des. 8, 2674 (2008)CrossRefGoogle Scholar
  20. 20.
    X.H. Lu, X. Huang, S.L. Xie, D.Z. Zheng, Z.Q. Liu, C.L. Liang, Y.X. Tong, Langmuir 26, 7569 (2010)CrossRefGoogle Scholar
  21. 21.
    X.H. Lu, D.Z. Zheng, J.Y. Gan, Z.Q. Liu, C.L. Liang, P. Liu, Y.X. Tong, J. Mater. Chem. 20, 7118 (2010)CrossRefGoogle Scholar
  22. 22.
    G.Z. Chen, C.X. Xu, X.Y. Song, W. Zhao, Y. Ding, S.X. Sun. Inorg. Chem. 47, 723 (2008)CrossRefGoogle Scholar
  23. 23.
    Y. Chen, T.M. Liu, C.L. Chen, W.W. Guo, R. Sun, S.H. Lv, M. Saito, S. Tsukimoto, Z.C. Wang, Ceram. Int. 39, 6607 (2013)CrossRefGoogle Scholar
  24. 24.
    R.B. Yu, L. Yan, P. Zheng, J. Chen, X.R. Xing, J. Phys. Chem. C 112, 19896 (2008)CrossRefGoogle Scholar
  25. 25.
    K. Lin, S. Chowdhury, Int. J. Mol. Sci. 11, 3226 (2010)CrossRefGoogle Scholar
  26. 26.
    Z.Y. Huo, C. Chen, X.W. Liu, D.R. Chu, H.H. Li, Q. Peng, Y.D. Li, Chem. Commun. 32, 3741 (2008)CrossRefGoogle Scholar
  27. 27.
    Z.J. Yang, D.Q. Han, D.L. Ma, H. Liang, L. Liu, Y.Z. Yang, Cryst. Growth Des. 10, 291 (2010)CrossRefGoogle Scholar
  28. 28.
    C.R. Li, M.Y. Cui, Q.T. Sun, W.J. Dong, Y.Y. Zheng, K. Tsukamoto, B.Y. Chena, W.H. Tang, J. Alloy. Compd. 504, 498 (2010)CrossRefGoogle Scholar
  29. 29.
    G.F. Wang, Q.Y. Mu, T. Chen, Y.D. Wang, J. Alloy Compd. 493, 202 (2010)CrossRefGoogle Scholar
  30. 30.
    X.B. Chen, G.S. Li, Y.G. Su, X.Q. Qiu, L.P. Li, Z.G. Zou, Nanotechnology. 20, 115606 (2009)CrossRefGoogle Scholar
  31. 31.
    F.L. Liang, Y. Yu, W. Zhou, X.Y. Xu, Z.H. Zhu, J. Mater. Chem. A. 3, 634 (2015)CrossRefGoogle Scholar
  32. 32.
    A. Younis, D. Chu, Y.V. Kaneti, S. Li, Nanoscale 8, 378 (2016)CrossRefGoogle Scholar
  33. 33.
    D. Jiang, W.Z. Wang, E.P. Gao, S.M. Sun, L. Zhang, Chem. Commun. 50, 2005 (2014)CrossRefGoogle Scholar
  34. 34.
    H. Li, A. Petz, H. Yan, J.C. Nie, S. Kunsagi-Mate, J. Phys. Chem. C 115, 1480 (2011)CrossRefGoogle Scholar
  35. 35.
    H.R. Tan, J.P.Y. Tan, C. Boothroyd, T.W. Hansen, Y.L. Foo, M. Lin, J. Phys. Chem. C 116, 242 (2012)CrossRefGoogle Scholar
  36. 36.
    A.C. Cabral, L.S. Cavalcante, R.C. Deus, E. Longo, A.Z. Simões, F. Moura, Ceram. Int. 40, 4445 (2014)CrossRefGoogle Scholar
  37. 37.
    X.D. Li, J.G. Li, D. Huo, Z.M. Xiu, X.D. Sun, J. Phys. Chem. C 113, 1806 (2009)CrossRefGoogle Scholar
  38. 38.
    H.F. Xu, H. Li, J. Magn. Magn. Mater. 377, 272 (2015)CrossRefGoogle Scholar
  39. 39.
    J. Zdravković, B. Simović, A. Golubović, D. Poleti, I. Veljković, M. Šćepanović, G. Branković, Ceram. Int. 41, 1970 (2015)CrossRefGoogle Scholar
  40. 40.
    F.M. Meng, J.F. Gong, Z.H. Fan, H.J. Li, J.T. Yuan, Ceram. Int. 42, 4700 (2016)CrossRefGoogle Scholar
  41. 41.
    L.N. Wang, F.M. Meng, K.K. Li, F. Lu, Appl. Surf. Sci. 286, 269 (2013)CrossRefGoogle Scholar
  42. 42.
    S. Maensiri, C. Masingboon, P. Laokul, W. Jareonboon, V. Promarak, P.L. Anderson, S. Seraphin, Cryst. Growth Des. 7, 950 (2007)CrossRefGoogle Scholar
  43. 43.
    S. Phoka, P. Laokul, E. Swatsitang, V. Promarak, S. Seraphin, S. Maensiri, Mater. Chem. Phys. 115, 423 (2009)CrossRefGoogle Scholar
  44. 44.
    S.H. Yu, H. Cölfen, A. Fischer, Coll. Surf. A: Physicochem. Eng. Asp. 243, 49 (2004)CrossRefGoogle Scholar
  45. 45.
    C.W. Sun, H. Li, H.R. Zhang, Z.X. Wang, L.Q. Chen, Nanotechnology. 16, 1454 (2005)CrossRefGoogle Scholar
  46. 46.
    F. Lu, F.M. Meng, L.N. Wang, Y. Sang, J.J. Luo, Micro. Nano. Lett. 7, 624 (2012)CrossRefGoogle Scholar
  47. 47.
    F.M. Meng, L.N. Wang, J.B. Cui, J. Alloy. Compd. 556, 102 (2013)CrossRefGoogle Scholar
  48. 48.
    S.Y. Chen, Y.H. Lu, T.W. Huang, D.C. Yan, C.L. Dong, J. Phys. Chem. C 114, 19576 (2010)CrossRefGoogle Scholar
  49. 49.
    J.H. Chen, Y.J. Lin, H.C. Chang, Y.H. Chen, L. Horng, C.C. Chang, J. Alloy. Compd. 548, 235 (2013)CrossRefGoogle Scholar
  50. 50.
    A. Thurber, K.M. Reddy, V. Shutthanandan, M.H. Engelhard, C. Wang, J. Hays, Phys. Rev. B. 76, 165206 (2007)CrossRefGoogle Scholar
  51. 51.
    A. Tiwari, V.M. Bhosle, S. Ramachandran, N. Sudhakar, J. Narayan, S. Budak, Appl. Phys. Lett. 88, 142511 (2006)CrossRefGoogle Scholar
  52. 52.
    P. Slusser, D. Kumar, A. Tiwari, Appl. Phys. Lett. 96, 142506 (2010)CrossRefGoogle Scholar
  53. 53.
    S.Y. Chen, C.H. Tsai, M.Z. Huang, D.C. Yan, T.W. Huang, A. Gloter, C.L. Chen, H.J. Lin, C.T. Chen, C.L. Dong, J. Phys. Chem. C 116, 8707 (2012)CrossRefGoogle Scholar
  54. 54.
    F.M. Meng, C. Zhang, Z.H. Fan, J.F. Gong, A.X. Li, Z.L. Ding, H.B. Tang, M. Zhang, G.F. Wu, J. Alloy. Compd. 647, 1013 (2015)CrossRefGoogle Scholar
  55. 55.
    M.I.B. Bernardi, A. Mesquita, F. Beron, K.R. Pirota, A.O.D. Zevallos, A.C. Doriguetto, H.B.D. Carvalho, Phys. Chem. 17, 3072 (2015)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Anhui Key Laboratory of Spintronics and Nanomaterials ResearchSuzhou UniversitySuzhouChina

Personalised recommendations