Advertisement

Photo catalytic property of Pt-CuO nanostructure films prepared by wet-chemical route and photochemical deposition method

  • Mohamad Mohsen Momeni
  • Narjes Mohammadi
  • Mahboubeh Mirhosseini
Article

Abstract

Platinum deposited CuO nanostructure films were synthesized using the wet-chemical route and photochemical deposition methods. CuO nanostructure films were grown on copper foil as substrate via a simple cost-effective wet-chemical route and used as templates for making Pt-deposited CuO samples. Platinum were deposited over the surfaces of CuO nanostructure films through a photochemical deposition process. The prepared catalysts were characterized by XRD, SEM and EDX analyses. SEM images showed formation of film containing different nano structures. The photo catalytic activity of samples was evaluated by monitoring the photo-degradation of methyl orange under visible-light irradiation. Platinum-deposited CuO (PtCuO) samples exhibit much higher visible-light-driven photo catalytic activities and the photo-stability improved significantly. Results demonstrated that the rate of degradation of the platinum-deposited CuO sample was more than 3.8 times faster than that of pure CuO nanostructures. The PtCuO catalysts prepared in this study exhibit industrially relevant interests due to the low cost, high photo catalytic activity and high stability.

Keywords

Methyl Orange Copper Foil Photo Catalyst Photo Catalytic Activity Photochemical Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M.M. Momeni, Y. Ghayeb, J. Mol. Catal. A: Chem. 417, 107 (2016)CrossRefGoogle Scholar
  2. 2.
    Y. Li, X. Zhang, H. Chen, Y. Li, Catal. Commun. 66, 1 (2015)CrossRefGoogle Scholar
  3. 3.
    M.M. Momeni, Appl. Surf. Sci. 357, 160 (2015)CrossRefGoogle Scholar
  4. 4.
    M. Ramezani, S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab, H.G. Estarki, J. Mater. Sci. Mater. Electron. 26, 7588 (2015)CrossRefGoogle Scholar
  5. 5.
    M.M. Momeni, Y. Ghayeb, J. Mater. Sci. Mater. Electron. 27, 3318 (2016)CrossRefGoogle Scholar
  6. 6.
    S.M. Hosseinpour-Mashkani, M. Ramezani, A. Sobhani-Nasab, M. Esmaeili-Zare, J. Mater. Sci. Mater. Electron. 26, 6086 (2015)CrossRefGoogle Scholar
  7. 7.
    M.M. Momeni, Z. Nazari, Ceram. Int. 42, 8691 (2016)CrossRefGoogle Scholar
  8. 8.
    M. Maddahfar, M. Ramezani, M. Sadeghi, A. Sobhani-Nasab, J. Mater. Sci. Mater. Electron. 26, 7745 (2015)CrossRefGoogle Scholar
  9. 9.
    M.M. Momeni, Y. Ghayeb, Ceram. Int. 42, 7014 (2016)CrossRefGoogle Scholar
  10. 10.
    A. Sobhani-Nasab, M. Maddahfar, S.M. Hosseinpour-Mashkani, J. Mol. Liq. 216, 1 (2016)CrossRefGoogle Scholar
  11. 11.
    S. Sonia, I.J. Annsi, P. SureshKumar, D. Mangalaraj, C. Viswanathan, N. Ponpandian, Mater. Lett. 144, 127 (2015)CrossRefGoogle Scholar
  12. 12.
    T. Jarlborg, Phys. C 454, 5 (2007)CrossRefGoogle Scholar
  13. 13.
    B. Sahin, M. Alomari, T. Kaya, Ceram. Int. 41, 8002 (2015)CrossRefGoogle Scholar
  14. 14.
    Y. Tian, Y. Liu, W.P. Wang, X. Zhang, W. Peng, Electrochim. Acta 156, 244 (2015)CrossRefGoogle Scholar
  15. 15.
    X. Gou, G. Wang, J. Yang, J. Park, D. Wexler, J. Mater. Chem. 18, 965 (2008)CrossRefGoogle Scholar
  16. 16.
    J.C. Park, J. Kim, H. Kwan, H. Song, Adv. Mater. 21, 803 (2009)CrossRefGoogle Scholar
  17. 17.
    M.M. Momeni, M. Mirhosseini, N. Mohammadi, J. Mater. Sci. Mater. Electron. 27, 6542 (2016)CrossRefGoogle Scholar
  18. 18.
    I. Singh, R.K. Bedi, Appl. Surf. Sci. 257, 7592 (2011)CrossRefGoogle Scholar
  19. 19.
    R. Sahay, J. Sundaramurthy, P.S. Kumar, V. Thavasi, S.G. Mhaisalkar, S. Ramakrishna, J. Solid State Chem. 186, 261 (2012)CrossRefGoogle Scholar
  20. 20.
    L. Zheng, X. Liu, Mater. Lett. 61, 2222 (2007)CrossRefGoogle Scholar
  21. 21.
    B. Li, Y. Wang, Superlattices Microstruct. 47, 615 (2010)CrossRefGoogle Scholar
  22. 22.
    P. Sathishkumar, R. Sweena, J.J. Wu, S. Anandan, Chem. Eng. J. 171, 136 (2011)CrossRefGoogle Scholar
  23. 23.
    P. Chand, A. Gaur, A. Kumar, U.K. Gaur, Appl. Surf. Sci. 307, 280 (2014)CrossRefGoogle Scholar
  24. 24.
    Y. Wanga, T. Jianga, D. Menga, D. Wanga, M. Yu, Appl. Surf. Sci. 355, 191 (2015)CrossRefGoogle Scholar
  25. 25.
    M.M. Momeni, Y. Ghayeb, J. Iran. Chem. Soc. 13, 481 (2016)CrossRefGoogle Scholar
  26. 26.
    M.M. Momeni, Y. Ghayeb, J. Mater. Sci. Mater. Electron. 27, 1062 (2016)CrossRefGoogle Scholar
  27. 27.
    M.M. Momeni, Y. Ghayeb, J. Solid State Electrochem. 20, 683 (2016)CrossRefGoogle Scholar
  28. 28.
    X. Liu, Z. Li, C. Zhao, W. Zhao, J. Yang, Y. Wang, F. Li, J. Colloid Interface Sci. 419, 9 (2014)CrossRefGoogle Scholar
  29. 29.
    D.D. Lin, H. Wu, R. Zhang, W. Pan, Chem. Mater. 21, 3479 (2009)CrossRefGoogle Scholar
  30. 30.
    S.L. Wang, H.H. Qian, Y. Hu, W. Dai, Y.J. Zhong, J.F. Chen, X. Hu, Dalton Trans. 42, 1122 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mohamad Mohsen Momeni
    • 1
  • Narjes Mohammadi
    • 2
    • 3
  • Mahboubeh Mirhosseini
    • 2
    • 3
  1. 1.Department of ChemistryIsfahan University of TechnologyIsfahanIran
  2. 2.Department of BiologyPayame Noor UniversityTehranIran
  3. 3.Department of Biology, Iran Nano Structured Coatings InstitutePayame Noor University, Yazd Payame Noor UniversityYazdIran

Personalised recommendations