Characterization of C12A7 thin films deposited by spray pyrolysis

  • W. Kerrour
  • A. Kabir
  • G. Schmerber
  • B. Boudjema
  • S. Zerkout
  • A. Bouabellou
  • C. Sedrati


In this work, conductive C12A7 thin films were deposited by spray pyrolysis method onto glass substrates. The films, structural, optical and electrical properties were investigated as a function of the spray number. X-rays diffraction showed that the deposited films were polycrystalline with a preferential orientation along the (310) planes. Raman spectroscopy confirmed the C12A7 phase and revealed the superoxide radical \( {\text{O}}_{2}^{ - } \) presence. The C12A7 films, optical transmission varied between 57 and 75 % as a function of the spray number. A constant band energy (4.14 eV), determined from UV–visible spectra, was attributed to the electrons transition from the valence band to the occupied cage level. According to the photoluminescence (PL) spectroscopy, two main emission peaks at 1.55 and 2.81 eV were respectively attributed to the formation of the “F+-like centers” and the electron transitions from the occupied cage level to the framework conduction band. Another emission peak at about 2.27 eV was attributed to the cages oxygen vacancies defects. The electrical resistivity variation between 10−4 and 1.36 Ω cm was correlated to the in cages oxygen vacancies produced during films deposition.


SnO2 Electrical Resistivity Oxygen Vacancy Aluminum Sulfate Spray Pyrolysis Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are indebted to one of them: G. Schmerber for his help during the structural and optical characterization.


  1. 1.
    G.J. Exarhos, X.D. Zhou, Thin Solid Films 515, 7025 (2007)CrossRefGoogle Scholar
  2. 2.
    H. Hosono, Thin Solid Films 515, 6000 (2007)CrossRefGoogle Scholar
  3. 3.
    K.L. Chopra, S. Major, D.K. Pandya, Thin Solid Films 102, 1 (1983)CrossRefGoogle Scholar
  4. 4.
    K. Hayashi, S. Matsuishi, T. Kamiya, M. Hirano, H. Hosono, Nature 419, 462 (2002)CrossRefGoogle Scholar
  5. 5.
    S.W. Kim, H. Hosono, Philos. Mag. 92, 2596 (2012)CrossRefGoogle Scholar
  6. 6.
    H. Bartl, T. Scheller, Neues Jahrb. Miner. Monatsh. 35, 547 (1970)Google Scholar
  7. 7.
    J.A. McLeod, A. Buling, E.Z. Kurmaev, P.V. Sushko, M. Neumann, L.D. Finkelstein, S.W. Kim, H. Hosono, A. Moewes, Phys. Rev. B 85, 045204 (2012)CrossRefGoogle Scholar
  8. 8.
    S. Matsuishi, Y. Toda, M. Miyakawa, K. Hayashi, T. Kamiya, M. Hirano, I. Tanaka, H. Hosono, Science 301, 626 (2003)CrossRefGoogle Scholar
  9. 9.
    J. Jeevaratnam, F.P. Glasser, L.S.D. Glasser, J. Am. Ceram. Soc. 47, 105 (1964)CrossRefGoogle Scholar
  10. 10.
    J.A. Imlach, L.S.D. Glasser, F.P. Glasser, Cem. Concr. Res. 1, 157 (1971)CrossRefGoogle Scholar
  11. 11.
    J.L. Dye, Science 301, 607 (2003)CrossRefGoogle Scholar
  12. 12.
    K. Hayashi, M. Hirano, S. Matsuishi, H. Hosono, J. Am. Chem. Soc. 124, 738 (2002)CrossRefGoogle Scholar
  13. 13.
    K. Hayashi, S. Matsuishi, N. Ueda, M. Hirano, H. Hosono, Chem. Mater. 15, 1851 (2003)CrossRefGoogle Scholar
  14. 14.
    B. Dennis, Elements of X-ray Diffraction, 3rd edn. (Prentice-Hall International, Upper Saddle River, 2000)Google Scholar
  15. 15.
    P.V. Sushko, A.L. Shluger, Y. Toda, M. Hirano, H. Hosono, Proc. R. Soc. A 467, 2066 (2011)CrossRefGoogle Scholar
  16. 16.
    M. Ruszak, S. Witkowski, P. Pietrzyk, A. Kotarba, Z. Sojka, Funct. Mater. Lett. 4, 183 (2011)CrossRefGoogle Scholar
  17. 17.
    S. Fujita, M. Ohkawa, K. Suzuki, H. Nakano, T. Mori, H. Masuda, Chem. Mater. 15, 4879 (2003)CrossRefGoogle Scholar
  18. 18.
    M.M. Rashad, A.G. Mostafa, D.A. Rayan, J. Mater. Sci. Mater. Electron. 27, 2614 (2016)CrossRefGoogle Scholar
  19. 19.
    E. Feizi, A.K. Ray, J. Mater. Sci. Mater. Electron. 26, 4691 (2015)CrossRefGoogle Scholar
  20. 20.
    K. Hayashi, P.V. Sushko, D.M. Ramo, A.L. Shluger, S. Watauchi, I. Tanaka, S. Matsuishi, M. Hirano, H. Hosono, J. Phys. Chem. B 111, 1946 (2007)CrossRefGoogle Scholar
  21. 21.
    P.M. Chavhan, A. Sharma, R.K. Sharma, G. Singh, N.K. Kaushik, Thin Solid Films 519, 18 (2010)CrossRefGoogle Scholar
  22. 22.
    P.V. Sushko, A.L. Shluger, K. Hayashi, M. Hirano, H. Hosono, Thin Solid Films 445, 161 (2003)CrossRefGoogle Scholar
  23. 23.
    H. Hosono, K. Hayashi, M. Hirano, J. Mater. Sci. 42, 1872 (2007)CrossRefGoogle Scholar
  24. 24.
    E.A. Kotomin, A.I. Popov, Nucl. Instrum. Methods Phys. Res. B 141, 1 (1998)CrossRefGoogle Scholar
  25. 25.
    H. Hosono, S.W. Kim, M. Miyakawa, S. Matsuishi, T. Kamiya, J. Non Cryst. Solids 354, 2772 (2008)CrossRefGoogle Scholar
  26. 26.
    C. Pollock, J. Lum. 35, 65 (1986)CrossRefGoogle Scholar
  27. 27.
    S. Paul, P.G. Harris, C. Pal, A.K. Sharma, A.K. Ray, Mater. Lett. 130, 40 (2007)CrossRefGoogle Scholar
  28. 28.
    S.W. Kim, S. Matsuishi, T. Nomura, Y. Kobota, M. Takata, K. Hayashi, T. Kamiya, M. Hirano, H. Hosono, Nano Lett. 7, 1138 (2007)CrossRefGoogle Scholar
  29. 29.
    P. Di Nola, F. Morazzoni, R. Scotii, D. Narducci, J. Chem. Soc. Faraday Trans. 89, 3711 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • W. Kerrour
    • 1
  • A. Kabir
    • 1
  • G. Schmerber
    • 2
  • B. Boudjema
    • 1
  • S. Zerkout
    • 3
  • A. Bouabellou
    • 4
  • C. Sedrati
    • 4
  1. 1.Laboratory of Research on the Physic-Chemical of Surfaces and Interfaces (LRPCSI), Faculty of SciencesUniversité 20 août 1955-SkikdaSkikdaAlgeria
  2. 2.IPCMS, UMR 7504 CNRS-UdSStrasbourgFrance
  3. 3.LCCUniversité des frères Mentouri Constantine IConstantineAlgeria
  4. 4.LCMIUniversité des frères Mentouri Constantine IConstantineAlgeria

Personalised recommendations