Improvements of epitaxial quality and stress state of GaN grown on SiC by in situ SiNx interlayer

  • Zhen Huang
  • Yuantao Zhang
  • Gaoqiang Deng
  • Baozhu Li
  • Shuang Cui
  • Hongwei Liang
  • Yuchun Chang
  • Junfeng Song
  • Baolin Zhang
  • Guotong Du


In this study, 4.5 μm thick GaN films with graded AlxGa1−xN/AlN buffer and SiNx interlayer were prepared on 6H–SiC substrates by metal–organic chemical vapor deposition. To determine the effects of SiNx interlayer on epitaxial quality and stress state of GaN films, a series of comparative experiments were carried out by changing the deposition time and the insert location of SiNx interlayer. By optimizing growth conditions of SiNx interlayer, the full width at half maximum values of \( (0002) \) and \( (10\bar{1}2) \) rocking curves of GaN films were improved to 142 and 170 arcsec, respectively. A crack-free GaN film with a small root-mean-squared roughness of 0.21 ± 0.02 nm was achieved. Simultaneously, the reduction in threading dislocation density of GaN films was confirmed by using wet etching method. In addition, stress values in GaN films were investigated by Raman and low-temperature photoluminescence spectra, which indicated that the lower tensile stress in GaN film, the higher the film’s crystallinity.


Edge Dislocation Reflectivity Curve Epitaxial Lateral Overgrowth Epitaxial Quality Insert Location 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Natural Science Foundation of China (Nos. 61106003, 61274023, 61223005 and 61376046), the Science and Technology Developing Project of Jilin Province (20130204032GX, 20150519004JH and 20160101309JC), and the Program for New Century Excellent Talents in University (NCET-13-0254).


  1. 1.
    F. Zhang, M. Ikeda, K. Zhou, Z.S. Liu, J.P. Liu, S.M. Zhang, H. Yang, J. Appl. Phys. 118, 033101 (2015)CrossRefGoogle Scholar
  2. 2.
    E.K. Kang, E. Kwon, J.W. Min, Y.M. Song, Y.T. Lee, Jpn. J. Appl. Phys. 54, 06FH02 (2015)CrossRefGoogle Scholar
  3. 3.
    X.J. Sun, D.B. Li, H. Song, Y.R. Chen, H. Jiang, G.Q. Miao, Z.M. Li, Nanoscale Res. Lett. 7, 282 (2012)CrossRefGoogle Scholar
  4. 4.
    C.Y. Fong, S.S. Ng, F.K. Yam, H. Hassan, Z. Hassan, J. Cryst. Growth 413, 1 (2015)CrossRefGoogle Scholar
  5. 5.
    N. Killat, J.W. Pomeroy, J.L. Jimenez, M. Kuball, Phys. Status Solidi A 211, 2844 (2014)CrossRefGoogle Scholar
  6. 6.
    Z.F. Shi, Y.T. Zhang, B. Wu, X.P. Cai, J.X. Zhang, X.C. Xia, H. Wang, X. Dong, H.W. Liang, B.L. Zhang, G.T. Du, Appl. Phys. Lett. 102, 161101 (2013)CrossRefGoogle Scholar
  7. 7.
    J. Edmond, A. Abare, M. Bergman, J. Bharathan, K.L. Bunker, D. Emerson, K. Haberern, J. Ibbetson, M. Leung, P. Russel, D. Slater, J. Cryst. Growth 272, 242 (2004)CrossRefGoogle Scholar
  8. 8.
    Y. Chen, Y. Jiang, P.Q. Xu, Z.G. Ma, X.L. Wang, L. Wang, H.Q. Jia, H. Chen, Chin. Phys. Lett. 28, 048101 (2011)CrossRefGoogle Scholar
  9. 9.
    F. Schubert, S. Zybell, J. Heitmann, T. Mikolajick, S. Schmult, J. Cryst. Growth 425, 145 (2015)CrossRefGoogle Scholar
  10. 10.
    L. Li, L.A. Yang, R.T. Cao, S.R. Xu, X.W. Zhou, J.S. Xue, Z.Y. Lin, W. Ha, J.C. Zhang, Y. Hao, J. Cryst. Growth 387, 1 (2014)CrossRefGoogle Scholar
  11. 11.
    Z. Huang, Y.T. Zhang, B.J. Zhao, F. Yang, J.Y. Jiang, G.Q. Deng, B.Z. Li, H.W. Liang, Y.C. Chang, J.F. Song, J. Mater. Sci. Mater. Electron. 27, 1738 (2016)CrossRefGoogle Scholar
  12. 12.
    J.Q. Xie, S. Chevtchenko, U. Ozgur, H. Morkoc, Appl. Phys. Lett. 90, 262112 (2007)CrossRefGoogle Scholar
  13. 13.
    Y. Li, S.C. Chen, M. Kong, S.L. Li, W. Tian, S.C. Sun, Z.H. Wu, Y.Y. Fang, J.N. Dai, C.Q. Chen, J. Appl. Phys. 115, 043503 (2014)CrossRefGoogle Scholar
  14. 14.
    M.J. Kappers, R. Datta, R.A. Oliver, F.D.G. Rayment, M.E. Vickers, C.J. Humphreys, J. Cryst. Growth 300, 70 (2007)CrossRefGoogle Scholar
  15. 15.
    K.Y. Zang, Y.D. Wang, L.S. Wang, S.Y. Chow, S.J. Chua, J. Appl. Phys. 101, 093502 (2007)CrossRefGoogle Scholar
  16. 16.
    F. Yun, Y.T. Moon, Y. Fu, K. Zhu, U. Ozgur, H. Morkoc, C.K. Inoki, T.S. Kuan, A. Sagar, R.M. Feenstra, J. Appl. Phys. 98, 123502 (2005)CrossRefGoogle Scholar
  17. 17.
    D.C. Yang, H.W. Liang, Y. Qiu, S.W. Song, Y. Liu, R.S. Shen, Y.M. Luo, G.T. Du, J. Mater. Sci. Mater. Electron. 24, 2716 (2013)CrossRefGoogle Scholar
  18. 18.
    T.S. Zheleva, O.H. Nam, W.M. Ashmawi, J.D. Griffin, R.F. Davis, J. Cryst. Growth 222, 706 (2001)CrossRefGoogle Scholar
  19. 19.
    K. Forghani, M. Klein, F. Lipski, S. Schwaiger, J. Hertkorn, R.A.R. Leute, F. Scholz, M. Feneberg, B. Neuschl, K. Thonke, O. Klein, U. Kaiser, R. Gutt, T. Passow, J. Cryst. Growth 315, 216 (2011)CrossRefGoogle Scholar
  20. 20.
    Y.R. Chen, H. Song, D.B. Li, X.J. Sun, H. Jiang, Z.M. Li, G.Q. Miao, Z.W. Zhang, Y. Zhou, Mater. Lett. 114, 26 (2014)CrossRefGoogle Scholar
  21. 21.
    S. Tanaka, M. Takeuchi, Y. Aoyagi, Jpn. J. Appl. Phys. 39, L831 (2000)CrossRefGoogle Scholar
  22. 22.
    M.J. Kappers, R. Datta, R.A. Oliver, F.D.G. Rayment, M.E. Vickers, C.J. Humphreys, J. Cryst. Growth 300, 70 (2007)CrossRefGoogle Scholar
  23. 23.
    M.S. Ferdous, X.Y. Sun, X. Wang, M.N. Fairchild, S.D. Hersee, J. Appl. Phys. 99, 096105 (2006)CrossRefGoogle Scholar
  24. 24.
    L. Lu, Z.Y. Gao, B. Shen, F.J. Xu, S. Huang, Z.L. Miao, Y. Hao, Z.J. Yang, G.Y. Zhang, X.P. Zhang, J. Xu, D.P. Yu, J. Appl. Phys. 104, 123525 (2008)CrossRefGoogle Scholar
  25. 25.
    D.G. Zhao, S.J. Xu, M.H. Xie, S.Y. Tong, H. Yang, Appl. Phys. Lett. 83, 677 (2003)CrossRefGoogle Scholar
  26. 26.
    H. Harima, J. Phys. Condens. Matter 14, R967 (2002)CrossRefGoogle Scholar
  27. 27.
    I. Ahmad, M. Holtz, N.N. Faleev, H. Temkin, J. Appl. Phys. 95, 1692 (2004)CrossRefGoogle Scholar
  28. 28.
    Y. Taniyasu, M. Kasu, T. Makimoto, J. Cryst. Growth 298, 310 (2007)CrossRefGoogle Scholar
  29. 29.
    H. Fang, Y. Takaya, H. Miyake, K. Hiramatsu, H. Asamura, K. Kawamura, H. Oku, J. Cryst. Growth 370, 254 (2013)CrossRefGoogle Scholar
  30. 30.
    M.A. Moram, M.J. Kappers, F. Massabuau, R.A. Oliver, C.J. Humphreys, J. Appl. Phys. 109, 073509 (2011)CrossRefGoogle Scholar
  31. 31.
    H. Siegle, A. Hoffmann, L. Eckey, C. Thomsen, J. Christen, F. Bertram, D. Schmidt, D. Rudloff, K. Hiramatsu, Appl. Phys. Lett. 71, 2490 (1997)CrossRefGoogle Scholar
  32. 32.
    S.W. Song, Y. Liu, H.W. Liang, D.C. Yang, K.X. Zhang, X.C. Xia, R.S. Shen, G.T. Du, J. Mater. Sci. Mater. Electron. 24, 2923 (2013)CrossRefGoogle Scholar
  33. 33.
    J.C. Zhang, D.G. Zhao, J.F. Wang, Y.T. Wang, J. Chen, J.P. Liu, H. Yang, J. Cryst. Growth 268, 24 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Zhen Huang
    • 1
  • Yuantao Zhang
    • 1
  • Gaoqiang Deng
    • 1
  • Baozhu Li
    • 1
  • Shuang Cui
    • 1
  • Hongwei Liang
    • 2
  • Yuchun Chang
    • 1
  • Junfeng Song
    • 1
  • Baolin Zhang
    • 1
  • Guotong Du
    • 1
  1. 1.State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and EngineeringJilin UniversityChangchunChina
  2. 2.School of Physics and Optoelectronic TechnologyDalian University of TechnologyDalianChina

Personalised recommendations