Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 9, pp 9683–9689 | Cite as

On the use of non-MPB lead zirconium titanate (PZT) granules for piezoelectric ceramic–polymer sensorial composites

  • Amal Shaji Karapuzha
  • Nijesh Kunnamkuzhakkal James
  • Sybrand van der Zwaag
  • Wilhelm Albert Groen
Article
  • 192 Downloads

Abstract

Modern flexible and sensitive sensors based on polymer–ceramic composites employ lead zirconate titanate (PZT) granulates having the morphotropic phase boundary (MPB) composition as the piezo active ingredient, as this composition gives the best properties in fully ceramic piezoelectric sensors. In this study, the possibility of using PZT granulates with compositions, which are not in the MPB region of the PZT phase diagram was investigated. Random 0–3 PZT–epoxy composites were prepared for the complete composition range of PZT ceramics [Pb(ZrxTi(1−x))0.99Nb0.01O3] with x ranging from x = 0 to x = 0.80. Piezoelectric and dielectric properties of such composites were systematically studied. It is shown that the highest voltage sensitivity (i.e. g33) of the piezoelectric composites is obtained for composition with much lower Zr levels (x < 0.1) than the MPB composition. The shift in optimal composition is related to shift in dielectric constant of PZT as a function of the Zr concentration.

Keywords

Dielectric Constant Piezoelectric Property Epoxy Composite Morphotropic Phase Boundary Effective Dielectric Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was financially supported by the Smartmix funding program (Grant No. SMVA06071), as part of the “Smart systems based on integrated Piezo” program. The authors gratefully acknowledge the technical support provided by Dr. I. Katsouras of the Max-Planck Institute for Polymer Research at Mainz for the hysteresis loop measurements.

References

  1. 1.
    B. Jaffe, W.R. Cook Jr., H. Jaffe, Piezoelectric Ceramics (Academic Press, New York, 1971)Google Scholar
  2. 2.
    E. Boucher, B. Guiffard, L. Lebrun, D. Guyomar, Effects of Zr/Ti ratio on structural, dielectric and piezoelectric properties of Mn-and (Mn, F)-doped lead zirconate titanate ceramics. Ceram. Int. 32, 479–485 (2006)CrossRefGoogle Scholar
  3. 3.
    M. Pereira, A. Peixoto, M. Gomes, Effect of Nb doping on the microstructural and electrical properties of the PZT ceramics. J. Eur. Ceram. Soc. 21, 1353–1356 (2001)CrossRefGoogle Scholar
  4. 4.
    A. J. Moulson, J. M. Herbert, Electroceramics: Materials, Properties, Applications, 2nd edn. (John Wiley & Sons, 2003)Google Scholar
  5. 5.
    J.F. Tressler, S. Alkoy, R.E. Newnham, Piezoelectric sensors and sensor materials. J. Electroceram. 2, 257–272 (1998)CrossRefGoogle Scholar
  6. 6.
    S.-Y. Chu, T.-Y. Chen, I.T. Tsai, W. Water, Doping effects of Nb additives on the piezoelectric and dielectric properties of PZT ceramics and its application on SAW device. Sens. Actuators A 113, 198–203 (2004)CrossRefGoogle Scholar
  7. 7.
    R.E. Newnham, Composite electroceramics. Ferroelectrics 68, 1–32 (1986)CrossRefGoogle Scholar
  8. 8.
    F. Li, R. Zuo, Bismuth sodium titanate based lead-free ceramic/epoxy 1–3 composites: fabrication and electromechanical properties. J. Mater. Sci.: Mater. Electron. 25, 2730–2736 (2014)Google Scholar
  9. 9.
    M.T. Sebastian, H. Jantunen, Polymer–ceramic composites of 0–3 connectivity for circuits in electronics: a review. Int. J. Appl. Ceram. Technol. 7, 415–434 (2010)Google Scholar
  10. 10.
    P.K. Mahato, S. Sen, Effect of surface modification of ceramic particles by SDS on the electrical properties of PZT–PVDF and BT–PVDF composites: interface effect. J. Mater. Sci.: Mater. Electron. 26, 2969–2976 (2015)Google Scholar
  11. 11.
    S. Dalle Vacche, Y. Leterrier, V. Michaud, D. Damjanovic, A.B. Aebersold, J.-A.E. Månson, Effect of interfacial interactions on the electromechanical response of poly (vinylidene fluoride–trifluoroethylene)/BaTiO 3 composites and its time dependence after poling. Compos. Sci. Technol. 114, 103–109 (2015)CrossRefGoogle Scholar
  12. 12.
    F. Chengju, M. Wei, Q. Yan, H. Zhixiong, G. Dongyun, Damping property of epoxy-based composite embedded with sol–gel-derived Pb (Zr0. 53Ti0. 47) O3 thin film. J. Mater. Sci.: Mater. Electron. 22, 911–914 (2011)Google Scholar
  13. 13.
    C. Bowen, H. Kim, P. Weaver, S. Dunn, Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 7, 25–44 (2014)CrossRefGoogle Scholar
  14. 14.
    E.K. Akdogan, M. Allahverdi, A. Safari, Piezoelectric composites for sensor and actuator applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 746–775 (2005)CrossRefGoogle Scholar
  15. 15.
    M.C. Araújo, C. Costa, S. Lanceros-Méndez, Evaluation of dielectric models for ceramic/polymer composites: effect of filler size and concentration. J. Non-Cryst. Solids 387, 6–15 (2014)CrossRefGoogle Scholar
  16. 16.
    T. Yamada, T. Ueda, T. Kitayama, Piezoelectricity of a high-content lead zirconate titanate/polymer composite. J. Appl. Phys. 53, 4328–4332 (1982)CrossRefGoogle Scholar
  17. 17.
    C. Dias, D. Das-Gupta, Inorganic ceramic/polymer ferroelectric composite electrets. IEEE Trans. Dielectr. Electr. Insul. 3, 706–734 (1996)CrossRefGoogle Scholar
  18. 18.
    J. Sheen, Z.-W. Hong, C.-W. Su, H.-C. Chen, Microwave measurements of dielectric constants by exponential and logarithmic mixture equations. Prog. Electromagn. Res. 100, 13–26 (2010)CrossRefGoogle Scholar
  19. 19.
    H. Khanbareh, S. van der Zwaag, W. Groen, Effect of dielectrophoretic structuring on piezoelectric and pyroelectric properties of lead titanate–epoxy composites. Smart Mater. Struct. 23, 105030 (2014)CrossRefGoogle Scholar
  20. 20.
    N. James, U. Lafont, S. van der Zwaag, W. Groen, Piezoelectric and mechanical properties of fatigue resistant, self-healing PZT–ionomer composites. Smart Mater. Struct. 23, 055001 (2014)CrossRefGoogle Scholar
  21. 21.
    N.K. James, D. van den Ende, U. Lafont, S. van der Zwaag, W.A. Groen, Piezoelectric and mechanical properties of structured PZT–epoxy composites. J. Mater. Res. 28, 635–641 (2013)Google Scholar
  22. 22.
    I. Babu, G. de With, Highly flexible piezoelectric 0–3 PZT–PDMS composites with high filler content. Compos. Sci. Technol. 91, 91–97 (2014)CrossRefGoogle Scholar
  23. 23.
    E. Venkatragavaraj, B. Satish, P. Vinod, M. Vijaya, Piezoelectric properties of ferroelectric PZT–polymer composites. J. Phys. D Appl. Phys. 34, 487 (2001)CrossRefGoogle Scholar
  24. 24.
    B. Chambion, L. Goujon, L. Badie, Y. Mugnier, C. Barthod, C. Galez et al., Optimization of the piezoelectric response of 0–3 composites: a modeling approach. Smart Mater. Struct. 20, 115006 (2011)CrossRefGoogle Scholar
  25. 25.
    D. van den Ende, B. Bory, W. Groen, S. van der Zwaag, Improving the d33 and g33 properties of 0–3 piezoelectric composites by dielectrophoresis. J. Appl. Phys. 107, 024107 (2010)CrossRefGoogle Scholar
  26. 26.
    X. Lou, Polarization fatigue in ferroelectric thin films and related materials. J. Appl. Phys. 105, 024101 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Amal Shaji Karapuzha
    • 1
  • Nijesh Kunnamkuzhakkal James
    • 1
  • Sybrand van der Zwaag
    • 1
  • Wilhelm Albert Groen
    • 1
    • 2
  1. 1.Novel Aerospace Materials Group, Faculty of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands
  2. 2.Holst Centre, TNOEindhovenThe Netherlands

Personalised recommendations