Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 9, pp 9656–9660 | Cite as

Enhancing red emission of CaBi2Ta2O9: Eu3+ phosphor by La3+ co-doping

  • Ruirui Cui
  • Xiang Guo
  • Xinyong Gong
  • Xucheng Li
  • Song Zhang
  • Doni Wu
  • Weichao Huang
  • Chaoyong Deng


The red-emitting phosphors of CaBi2Ta2O9: Eu3+ and CaBi2Ta2O9: Eu3+/La3+ were prepared by the high-temperature solid-state reaction method. By using X-ray diffraction, the structural properties of powders have been analyzed. The photoluminescence excitation and emission spectra of CaBi2Ta2O9: Eu3+, and the dependence of luminescence intensity on doped Eu3+ ions concentration were investigated. The results show that CaBi2Ta2O9: Eu3+ can be efficiently excited by near-UV and blue light to realize an intense red luminescence (615 nm) corresponding to the electric dipole transition 5D0 → 7F2 of Eu3+ ions. Meantime, an enhancement of photoluminescence intensity was observed in La3+ ions doped CaBi2Ta2O9: Eu3+ phosphors. The CIE chromaticity coordinates of CaBi2Ta2O9: Eu3+ and CaBi2Ta2O9: Eu3+/La3+ are (0.6121, 0.3835) and (0.6141, 0.3821), corresponding to the hues of orange-red. The phosphors can be suggested to be a potential red-emitting phosphor for the application on white LEDs under irradiation of near-UV or blue chips.


Electric Dipole Transition Bismuth Titanate TaO2 Simple Solid State Reaction Cooperative Rotation 



This work was supported by the National Natural Science Fund of China (No. 51462003), Science Research Fund of Guizhou Province, China (Nos. 2015-7643, 2015-4006, 2014-001, 2013-2216), and Introduced Talents Funds of Guizhou University (No. 2014-31).


  1. 1.
    B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, W. Jo, Nature 401, 682 (1999)CrossRefGoogle Scholar
  2. 2.
    S. Zhang, F. Yu, J. Am. Ceram. Soc. 94, 3153 (2011)CrossRefGoogle Scholar
  3. 3.
    B. Aurivillius, Ark. Kemi. 1, 499 (1949)Google Scholar
  4. 4.
    K.B. Ruan, G.H. Wu, H. Zhou, J. Electroceram. 29, 37 (2012)CrossRefGoogle Scholar
  5. 5.
    T.S. Chan, C.L. Dong, Y.H. Chen, Y.R. Lu, S.Y. Wu, Y.R. Ma, C.C. Lin, R.S. Liu, J.L. Chen, J.H. Guo, J.F. Lee, H.S. Sheu, C.C. Yang, C.L. Chen, J. Mater. Chem. 21, 17121 (2011)CrossRefGoogle Scholar
  6. 6.
    H.W. Zheng, S.J. Liu, G.S. Yin, W.C. Wang, C.L. Diao, Y.Z. Gu, W.F. Zhang, J. Sol-Gel. Sci. Technol. 59, 290 (2011)CrossRefGoogle Scholar
  7. 7.
    S. Sailaja, B.S. Reddy, Ceram. Int. 37, 1781 (2011)CrossRefGoogle Scholar
  8. 8.
    K. Aizawa, Y. Ohtani, Jpn. J. Appl. Phys. 46, 6944 (2007)CrossRefGoogle Scholar
  9. 9.
    K. Aizawa, Y. Ohtani, Mater. Res. Soc. 1111, D07 (2009)Google Scholar
  10. 10.
    D.F. Peng, H.Q. Sun, X.S. Wang, J.C. Zhang, M.M. Tang, X. Yao, J. Alloys Compd. 511, 159 (2012)CrossRefGoogle Scholar
  11. 11.
    D.F. Peng, X.S. Wang, C.N. Xu, X. Yao, J. Lin, T.T. Sun, J. Appl. Phys. 111, 104111 (2012)CrossRefGoogle Scholar
  12. 12.
    Y. Shimakawa, Y. Kubo, Y. Nakagawa, S. Goto, T. Kamiyama, H. Asanno, F. Izumi, Phys. Rev. B 61, 6559 (2000)CrossRefGoogle Scholar
  13. 13.
    B. Xu, X. Li, J. Sun, L. Yi, Eur. Phys. J. B 66, 483 (2008)CrossRefGoogle Scholar
  14. 14.
    F.B. Cao, L.S. Li, Y.W. Tian, Z.F. Gao, Y.J. Chen, L.J. Xiao, X.R. Wu, Opt. Mater. 33, 751 (2011)CrossRefGoogle Scholar
  15. 15.
    J.H. Ryu, K.M. Kim, S.W. Mhin, G.S. Park, J.W. Eun, K.B. Shim, C.S. Lim, Appl. Phys. A Mater. Sci. Process. 92, 407 (2008)CrossRefGoogle Scholar
  16. 16.
    X. Wu, J. Du, H. Li, M. Zhang, B. Xi, H. Fan, Y. Zhu, Y. Qian, J. Solid State Chem. 180, 3288 (2007)CrossRefGoogle Scholar
  17. 17.
    P. Afanasiev, Mater. Lett. 61, 4622 (2007)CrossRefGoogle Scholar
  18. 18.
    T.W. Chou, S. Mylswamy, R.S. Liu, S.Z. Chuang, Solid State Commun. 136, 205 (2005)CrossRefGoogle Scholar
  19. 19.
    Y.Y. Tsai, Y.S. Chang, Mater. Res. Bull. 48, 2612 (2013)CrossRefGoogle Scholar
  20. 20.
    H. Zhou, G. Wu, N. Qin, D. Bao, J. Am. Ceram. Soc. 93, 2109 (2010)CrossRefGoogle Scholar
  21. 21.
    F. Yang, Y.J. Liang, M.Y. Liu, X.J. Li, N. Wang, Z.G. Xia, Ceram. Int. 38, 6198 (2012)Google Scholar
  22. 22.
    R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976)CrossRefGoogle Scholar
  23. 23.
    R.R. Cui, C.Y. Deng, X.Y. Gong, X.C. Li, J.P. Zhou, J. Electroceream. 32, 218 (2014)Google Scholar
  24. 24.
    Y.X. Li, G. Chen, H.J. Zhang, Z.H. Li, J.X. Sun, J. Solid State Chem. 181, 2653 (2008)CrossRefGoogle Scholar
  25. 25.
    D.Y. Yu, Y.J. Liang, M.F. Zhang, M.H. Tong, Q. Wang, J.W. Zhao, J.M. Wu, G.G. Li, C.J. Yan, J. Mater. Sci. Mater. Electron. 25, 3530 (2014)Google Scholar
  26. 26.
    Q. Liu, L.X. Wang, L. Zhang, H. Yang, M.X. Yu, Q.T. Zhang, J. Mater. Sci. Mater. Electron. 26, 8085 (2015)Google Scholar
  27. 27.
    R.R. Cui, C.Y. Deng, X.Y. Gong, X.C. Li, J.P. Zhou, Mater. Res. Bull. 48, 4301 (2013)CrossRefGoogle Scholar
  28. 28.
    F.B. Cao, Ind. Eng. Chem. Res. 51, 3572 (2012)Google Scholar
  29. 29.
    D.L. Dexter, J.A. Schulman, J. Chem. Phys. 22, 1063 (1954)CrossRefGoogle Scholar
  30. 30.
    G. Blasse, Philips Res. Rep. 24, 131 (1969)Google Scholar
  31. 31.
    S. Shionoya, W.M. Yen, Phosphor Handbook (CRC Press, Boca Raton, 1999)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ruirui Cui
    • 1
  • Xiang Guo
    • 1
  • Xinyong Gong
    • 1
  • Xucheng Li
    • 1
  • Song Zhang
    • 1
  • Doni Wu
    • 1
  • Weichao Huang
    • 1
  • Chaoyong Deng
    • 1
  1. 1.Key Laboratory of Functional Composite Materials of Guizhou Province, Department of Electronic Science, College of Big Data and Information EngineeringGuizhou UniversityGuiyangChina

Personalised recommendations