Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 9, pp 9650–9655 | Cite as

Greatly enhanced dielectric permittivity in poly(vinylidene fluoride)-based polymeric composites induced by Na1/3Ca1/3Bi1/3Cu3Ti4O12 nanoparticles

  • Pornsawan Kum-onsa
  • Prasit Thongbai
  • Santi Maensiri
  • Prinya Chindaprasirt


Greatly enhanced dielectric permittivity (ε′) in poly(vinylidene fluoride) (PVDF) polymeric composites was induced by incorporating Na1/3Ca1/3Bi1/3Cu3Ti4O12 (NCB) nanoparticles. The NCB/PVDF composites were fabricated by conventional mixed powders and hot pressing. Nanosized (NCB-NPs) and microsized-powders (NCB-MPs) prepared, respectively, by chemical combustion and solid state reaction methods were used as fillers. The dispersion of NCB-NPs was quite good in the PVDF matric. A greatly improved ε′ of PVDF-based polymeric composites can be induced by filling with NCB-NPs compared to that of the NCB-MPs/PVDF composite. Interestingly, at 103 Hz, the nanocomposite with 50 vol% of NCB-NPs can exhibit good dielectric properties with high ε′ of about 210.8 and low loss tangent (tanδ ≈ 0.83). This enhanced ε′ value is much larger than that of PVDF polymer by a factor of ≈20. The increase in ε′ in the nanocomposites is attributed to large interfacial areas and very short interparticle distance. These can cause a great increase in the interfacial polarization intensity.


Vinylidene Fluoride Ceramic Filler Polarization Intensity Good Dielectric Property PVDF Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by the Thailand Research Fund (TRF) and Khon Kaen University under the TRF Senior Research Scholar Contract No. RTA5780004. P. Kum-onsa would like to thank the Science Achievement Scholarship of Thailand (SAST) for her Master of Science Degree scholarship.


  1. 1.
    Z.-M. Dang, J.-K. Yuan, J.-W. Zha, T. Zhou, S.-T. Li, G.-H. Hu, Prog. Mater Sci. 57, 660 (2012)CrossRefGoogle Scholar
  2. 2.
    P. Martins, A.C. Lopes, S. Lanceros-Mendez, Prog. Polym. Sci. 39, 683 (2014)CrossRefGoogle Scholar
  3. 3.
    D. Wang, Y. Bao, J.-W. Zha, J. Zhao, Z.-M. Dang, G.-H. Hu, ACS Appl. Mater. Interfaces 4, 6273 (2012)CrossRefGoogle Scholar
  4. 4.
    T. Li, J. Chen, H. Dai, D. Liu, H. Xiang, Z. Chen, J. Mater. Sci. Mater. Electron. 26, 312 (2014)CrossRefGoogle Scholar
  5. 5.
    M.-F. Lin, V.K. Thakur, E.J. Tan, P.S. Lee, RSC Adv. 1, 576 (2011)CrossRefGoogle Scholar
  6. 6.
    P. Thakur, A. Kool, N.A. Hoque, B. Bagchi, S. Roy, N. Sepay, S. Das, P. Nandy, RSC Adv. 6, 26288 (2016)CrossRefGoogle Scholar
  7. 7.
    X. Lin, P. Hu, Z. Jia, S. Gao, J. Mater. Chem. A 4, 2314 (2016)CrossRefGoogle Scholar
  8. 8.
    A. Paleo, C. Martínez-Boubeta, L. Balcells, C. Costa, V. Sencadas, S. Lanceros-Mendez, Nanoscale Res. Lett. 6, 257 (2011)CrossRefGoogle Scholar
  9. 9.
    Q. Xiao, L. Li, B.Q. Zhang, X.M. Chen, Ceram. Int. 39, S3 (2013)CrossRefGoogle Scholar
  10. 10.
    Y. Song, Y. Shen, H. Liu, Y. Lin, M. Li, C.-W. Nan, J. Mater. Chem. 22, 16491 (2012)CrossRefGoogle Scholar
  11. 11.
    N. Levi, R. Czerw, S. Xing, P. Iyer, D.L. Carroll, Nano Lett. 4, 1267 (2004)CrossRefGoogle Scholar
  12. 12.
    J. Bi, Y. Gu, Z. Zhang, S. Wang, M. Li, Z. Zhang, Mater. Des. 89, 933 (2016)Google Scholar
  13. 13.
    K. Silakaew, W. Saijingwong, K. Meeporn, S. Maensiri, P. Thongbai, Microelectron. Eng. 146, 1 (2015)CrossRefGoogle Scholar
  14. 14.
    K. Yu, H. Wang, Y. Zhou, Y. Bai, Y. Niu, J. Appl. Phys. 113, 034105 (2013)CrossRefGoogle Scholar
  15. 15.
    T. Zhou, J.-W. Zha, R.-Y. Cui, B.-H. Fan, J.-K. Yuan, Z.-M. Dang, ACS Appl. Mater. Interfaces 3, 2184 (2011)CrossRefGoogle Scholar
  16. 16.
    L. Xie, X. Huang, Y. Huang, K. Yang, P. Jiang, ACS Appl. Mater. Interfaces 5, 1747 (2013)CrossRefGoogle Scholar
  17. 17.
    Y.K. Jang, J.C. Won, H.G. Yoon, Appl. Phys. Lett. 95, 052907 (2009)CrossRefGoogle Scholar
  18. 18.
    K. Li, H. Wang, F. Xiang, W. Liu, H. Yang, Appl. Phys. Lett. 95, 202904 (2009)CrossRefGoogle Scholar
  19. 19.
    W. Xia, Z. Xu, F. Wen, Z. Zhang, Ceram. Int. 38, 1071 (2012)CrossRefGoogle Scholar
  20. 20.
    Y. Song, Y. Shen, P. Hu, Y. Lin, M. Li, C.W. Nan, Appl. Phys. Lett. 101, 152904 (2012)CrossRefGoogle Scholar
  21. 21.
    P. Thomas, K.T. Varughese, K. Dwarakanath, K.B.R. Varma, Compos. Sci. Technol. 70, 539 (2010)CrossRefGoogle Scholar
  22. 22.
    Y. Shen, A. Gu, G. Liang, L. Yuan, Compos. A Appl. Sci. Manuf. 41, 1668 (2010)CrossRefGoogle Scholar
  23. 23.
    B.S. Prakash, K.B.R. Varma, Compos. Sci. Technol. 67, 2363 (2007)CrossRefGoogle Scholar
  24. 24.
    Y.-L. Su, C. Sun, W.-Q. Zhang, H. Huang, J. Mater. Sci. 48, 8147 (2013)CrossRefGoogle Scholar
  25. 25.
    Z. Wang, M. Fang, H. Li, Y. Wen, C. Wang, Y. Pu, Compos. Sci. Technol. 117, 410 (2015)CrossRefGoogle Scholar
  26. 26.
    K.S. Deepa, M.T. Sebastian, J. James, Appl. Phys. Lett. 91, 202904 (2007)CrossRefGoogle Scholar
  27. 27.
    W. Tuichai, P. Thongbai, V. Amornkitbamrung, T. Yamwong, S. Maensiri, Microelectron. Eng. 126, 118 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Pornsawan Kum-onsa
    • 1
  • Prasit Thongbai
    • 2
  • Santi Maensiri
    • 3
  • Prinya Chindaprasirt
    • 4
  1. 1.Materials Science and Nanotechnology Program, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand
  2. 2.Integrated Nanotechnology Research Center (INRC), Department of Physics, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand
  3. 3.School of Physics, Institute of ScienceSuranaree University of TechnologyNakhon RatchasimaThailand
  4. 4.Sustainable Infrastructure Research and Development Center, Department of Civil Engineering, Faculty of EngineeringKhon Kaen UniversityKhon KaenThailand

Personalised recommendations