Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 9, pp 9572–9576 | Cite as

Influence of Zr/Ti ratio on the dielectric properties of BaZr x Ti1−x O3 ceramics for high-voltage capacitor applications

  • Yan Zhang
  • Yaoyao Li
  • Haikui Zhu
  • Zhenxiao Fu
  • Qitu Zhang


Ba(Zr x Ti1−x )O3 ceramics are prepared via the conventional solid state reaction method. The Zr4+ ions have diffused into the BaTiO3 lattices to form a homogenous solid solution. The effects of Zr/Ti ratio on dielectric properties and breakdown strength of Ba(Zr x Ti1−x )O3 ceramics are systematically discussed. The high porosities of Ba(Zr x Ti1−x )O3 ceramics deteriorate seriously the dielectric constant, dielectric loss and the breakdown strength. When the concentration of Zr4+ ions increase from x = 0.05 to x = 0.20, the Curie temperature Tc decreases slightly from 120 to 60 °C, the grain sizes decrease slightly as well attributing to the difference ionic radius of Ti4+ ions and Zr4+ ions. The concentration of Zr4+ ions has a significant effect on the breakdown strength of Ba(Zr x Ti1−x )O3 ceramics. Excellent breakdown strength and dielectric properties are achieved in the BaZr0.15Ti0.85O3 ceramics sintered at 1260 °C for 2 h: Eb = 12.028 kv/mm, ε r  = 3334.6, tanδ = 0.005.


Dielectric Property Dielectric Loss BaTiO3 Barium Titanate Solid State Reaction Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure (Project No. SKL201309SIC), as well as Science and Technology Projects of Guangdong Province (Project No. 2011A091103002). This work is partly supported by National Natural Science Foundation of China (51502132).


  1. 1.
    J.Q. Qi, B.B. Liu, H.Y. Tian, H. Zou, Z.X. Yue, L.T. Li, Solid State Sci. 14, 1520 (2012)CrossRefGoogle Scholar
  2. 2.
    P. Zheng, K.X. Song, H.B. Qin, L. Zheng, L.M. Zheng, Curr. Appl. Phys. 13, 1064 (2013)CrossRefGoogle Scholar
  3. 3.
    J.I. Yang, R.G. Polcawich, L.M. Sanchez, S. Trolier-McKinstry, J. Appl. Phys. 117, 014103 (2015)CrossRefGoogle Scholar
  4. 4.
    Y.J. Eoh, E.S. Kim, Ceram. Int. 41, S2 (2015)CrossRefGoogle Scholar
  5. 5.
    W.Q. Cao, J.W. Xiong, J.P. Sun, Mater. Chem. Phys. 1063, 38 (2007)Google Scholar
  6. 6.
    H.W. Chen, C.R. Yang, C.L. Fu, J. Shi, J.H. Zhang, W.J. Leng, J. Mater. Sci. Mater. Electron. 19, 379 (2007)CrossRefGoogle Scholar
  7. 7.
    A. Zeb, S.J. Milne, J. Mater. Sci. Mater. Electron. 26, 9243 (2015)CrossRefGoogle Scholar
  8. 8.
    T. Tsurumi, Y. Yamamoto, H. Kakemoto, S. Wada, J. Mater. Res. 17, 755 (2002)CrossRefGoogle Scholar
  9. 9.
    W.S. Choi, B.S. Jang, D.G. Lim, J.S. Yi, B.Y.Y. Hong, J. Cryst. Growth 237–239, 438 (2002)CrossRefGoogle Scholar
  10. 10.
    W. Cai, C.L. Fu, J.C. Gao, X.L. Deng, J. Mater. Sci. Mater. Electron. 21, 317 (2009)CrossRefGoogle Scholar
  11. 11.
    W.S. Choi, J.H. Boo, J.S. Yi, B.Y.Y. Hong, Mater. Sci. Semicond. Process. 2, 211 (2003)Google Scholar
  12. 12.
    D.Y. Liang, X.H. Zhu, J.L. Zhu, J.G. Zhu, D.Q. Xiao, Ceram. Int. 40, 2585 (2014)CrossRefGoogle Scholar
  13. 13.
    S.J. Kuang, X.G. Tang, L.Y. Li, Y.P. Jiang, Q.X. Liu, Scr. Mater. 61, 68 (2009)CrossRefGoogle Scholar
  14. 14.
    M.H. Kallel, I. Kriaa, H.M.D. Khemakhem, Ceram. Int. 42, 1379 (2016)CrossRefGoogle Scholar
  15. 15.
    Y.L. Wang, L.T. Li, J.Q. Qi, Z.L. Gui, Ceram. Int. 28, 657 (2002)CrossRefGoogle Scholar
  16. 16.
    N. Ding, X.G. Tang, X.D. Ding, Q.X. Liu, Y.P. Jiang, L.L. Jiang, J. Mater. Sci. Mater. Electron. 25, 2305 (2014)CrossRefGoogle Scholar
  17. 17.
    D. Shan, Y.F. Qu, J.J. Song, Solid State Commun. 141, 65 (2007)CrossRefGoogle Scholar
  18. 18.
    Y.L. Li, R.R. Wang, X.G. Ma, Z.Q. Li, R.L. Sang, Y.F. Qu, Mater. Res. Bull. 44, 6143 (2005)Google Scholar
  19. 19.
    Z.Y. Shen, Q.G. Hu, Y.M. Li, Z.M. Wang, W.Q. Luo, Y. Hong, Z.X. Xie, R.H. Liao, J. Am. Ceram. Soc. 96, 2551 (2013)CrossRefGoogle Scholar
  20. 20.
    A. Young, G. Hilmas, S.C. Zhang, R.W. Schwartz, J. Am. Ceram. Soc. 90, 1504 (2007)CrossRefGoogle Scholar
  21. 21.
    Y. Yang, S. C. Zhang, F. Dogan, E. Schamiloglu, J. Gaudet, Influence of Nanocrystalline Grain Size on the Breakdown Strength of Ceramic Dielectrics, vol. 1 (IEEE International Pulsed Power Conference, 2003), p. 722Google Scholar
  22. 22.
    V.S. Puli, A. Kumar, R.S. Katiyar, X. Su, C.M. Busta, D.B. Chrisey, M. Tomozawa, J. Non-Cryst. Solids 358, 3510 (2012)CrossRefGoogle Scholar
  23. 23.
    X.G. Wang, Y. Zhang, X.Z. Song, Z.B. Yuan, T. Ma, Q. Zhang, C.S. Deng, T.X. Liang, J. Eur. Ceram. Soc. 32, 559 (2012)CrossRefGoogle Scholar
  24. 24.
    D.A. Tuan, V.T. Tung, T.V. Chuong, Int. J. Mod. Phys. B 29, 1550231 (2015)CrossRefGoogle Scholar
  25. 25.
    X.G. Huang, J. Zhang, W.F. Rao, T.Y. Sang, B. Song, C.P. Wong, J. Alloys. Compd. 662, 409 (2016)CrossRefGoogle Scholar
  26. 26.
    X.G. Huang, Y.Y. Chen, J.H. Yu, J. Zhang, T.Y. Sang, G.X. Tao, H.L. Zhu, J. Mater. Sci. Mater. Electron. 26, 3474 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yan Zhang
    • 1
    • 2
  • Yaoyao Li
    • 1
    • 2
  • Haikui Zhu
    • 1
    • 2
  • Zhenxiao Fu
    • 3
  • Qitu Zhang
    • 1
    • 2
  1. 1.College of Materials Science and EngineeringNanjing Tech UniversityNanjingChina
  2. 2.Jiangsu Collaborative Innovation Center for Advanced Inorganic Function CompositesNanjingChina
  3. 3.Guangdong Fenghua Advanced Technology Company LimitedZhaoqingChina

Personalised recommendations