Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 9, pp 9531–9540 | Cite as

Preparation, morphology and properties of natural rubber/carbon black/multi-walled carbon nanotubes conductive composites



Nature rubber (NR)/carbon black (CB)/multi-walled carbon nanotubes (MWNTs) electrical conductive composites were prepared through latex compounding technique assisted by anionic surfactants containing phenyl ring moieties, NR/MWNTs masterbatch treated with silane coupling agent containing polysulphide bond and mixed with commercial NR, CB, sulphur and other ingredients and vulcanization. When MWNTs were dispersed in sodium dodecylbenzene sulfonate (SDBS) water solution, SDBS assembly on the surface of MWNTs prevent aggregation of MWNTs in water forming a stable MWNTs suspension. After MWNTs suspension mixed with NR latex, NR-MWNTs latex compound was co-coagulated to obtain the well dispersed NR/MWNTs masterbatch. In order to strengthen interface bonding between MWNTs and NR matrix, MWNTs in the masterbatch were treated with silane coupling agent by melt mixing process. During rubber mixing process, MWNTs dispersed in masterbatch thoroughly mixed with all the components and MWNTs homogenously embedded in NR matrix. Owing to homogenous dispersion of MWNTs, interfacial bonding between MWNTs and NR matrix as well as synergistic reinforcing effect between MWNTs and CB, NR/CB/MWNTs composites exhibited improved mechanical properties, dynamical storage modulus, glass transition temperature, electrical and thermal conductivity. Tensile strength, stress at 300 % strain, tear strength and steady state thermal conductivity of NR/CB/MWNTs composite with 4 phr MWNTs loading were increased by 12.36, 26.02, 16.95 and 102 %, respectively, and volume resistivity at room temperature of the composite was decreased by four orders of magnitude compared with NR/CB composite.


Carbon Black Storage Modulus Natural Rubber Anionic Surfactant Crosslink Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge financial support by National Training Programs of Innovation and Entrepreneurship for college student (No. 201510059006).


  1. 1.
    V.V. Rajan, W.K. Dierkes, R. Joseph, J.W.M. Noordermeer, Prog. Polym. Sci. 31, 811 (2006)CrossRefGoogle Scholar
  2. 2.
    A. Das, K.W. Stöckelhuber, R. Jurk, M. Saphiannikova, J. Fritzsche, H. Lorenz, M. Klüppel, G. Heinrich, Polymer 49, 5276 (2008)CrossRefGoogle Scholar
  3. 3.
    S. Kohjiya, A. Kato, Y. Ikeda, Prog. Polym. Sci. 33, 979 (2008)CrossRefGoogle Scholar
  4. 4.
    J.J.C. Busfield, C. Deeprasertkul, A.G. Thomas, Polymer 41, 9219 (2000)CrossRefGoogle Scholar
  5. 5.
    L. Bokobza, J.P. Chauvin, Polymer 46, 4144 (2005)CrossRefGoogle Scholar
  6. 6.
    H.H. Cai, S.D. Li, T.G. Rian, H.B. Wang, J.H. Wang, J. Appl. Polym. Sci. 87, 982 (2003)CrossRefGoogle Scholar
  7. 7.
    C.A. Rezende, F.C. Braganc, T.R. Doi, L.T. Lee, F. Galembeck, F. Boué, Polymer 51, 3644 (2010)CrossRefGoogle Scholar
  8. 8.
    L. Bokobza, O. Rapoport, J. Appl. Polym. Sci. 85, 2301 (2002)CrossRefGoogle Scholar
  9. 9.
    S.K. Peddini, C.P. Bosnyak, N.M. Henderson, C.J. Ellison, D.R. Paul, Polymer 56, 443 (2015)CrossRefGoogle Scholar
  10. 10.
    O. Breuer, U. Sundararaj, Polym. Compos. 25, 630 (2004)CrossRefGoogle Scholar
  11. 11.
    P.C. Ma, J.-K. Kim, B.Z. Tang, Compos. Sci. Technol. 67, 2965 (2007)CrossRefGoogle Scholar
  12. 12.
    S. Bhattacharyya, C. Sinturel, O. Bahloul, M.L. Saboungi, S. Thomas, J.P. Salvetat, Carbon 46, 1037 (2008)CrossRefGoogle Scholar
  13. 13.
    N. Grossiord, J. Loos, C.E. Koning, J. Mater. Chem. 15, 2349 (2005)CrossRefGoogle Scholar
  14. 14.
    C.F. Matos, F. Galembeck, A.J.G. Zarbin, Carbon 50, 4685 (2012)CrossRefGoogle Scholar
  15. 15.
    Y.H. Zhan, G.Q. Liu, H.S. Xia, N. Yan, Plast. Rubber Compos. 40, 32 (2011)CrossRefGoogle Scholar
  16. 16.
    A. Mohamed, A.K. Anas, S.A. Bakar, T. Ardyani, W.M.W. Zin, S. Ibrahim, M. Sagisaka, P. Brown, J. Eastoe, J. Colloid interface Sci. 455, 179 (2015)CrossRefGoogle Scholar
  17. 17.
    A.M. Shanmugharaj, J.H. Bae, K.Y. Lee, W.H. Noh, S.H. Lee, S.H. Ryu, Compos. Sci. Technnol. 67, 1813 (2007)CrossRefGoogle Scholar
  18. 18.
    N. Yan, J.K. Wu, Y.H. Zhan, H.S. Xia, Plast. Rubber Compos. 38, 290 (2009)CrossRefGoogle Scholar
  19. 19.
    O.A. Al-Hartomy, A.A. Al-Ghamdi, F. Al-Salamy, N. Dishovsky, R. Shtarkova, V. Iliev, F. El-Tantawy, Plast. Rubber Compos. 41, 408 (2012)CrossRefGoogle Scholar
  20. 20.
    B. Guo, Y. Lei, F. Chen, X.L. Liu, M. Du, D. Jia, Appl. Surf. Sci. 255, 7329 (2009)CrossRefGoogle Scholar
  21. 21.
    R. Stephen, S. Jose, K. Joseph, S. Thomas, Z. Oommen, Polym. Degrad. Stab. 91, 1717 (2006)CrossRefGoogle Scholar
  22. 22.
    T. Pojanavaraphan, R. Magaraphan, Eur. Polym. J. 44, 1968 (2008)CrossRefGoogle Scholar
  23. 23.
    M.A. Kader, K. Kim, Y.S. Lee, C. Nah, J. Mater. Sci. 41, 7341 (2006)CrossRefGoogle Scholar
  24. 24.
    S.-Y. Wu, S.-M. Yuen, C.-C.M. Ma, C.-L. Chiang, J. Appl. Polym. Sci. 115, 3481 (2010)CrossRefGoogle Scholar
  25. 25.
    J. Xu, P. Yao, Z. Jiang, H. Liu, X. Li, L. Liu, M. Li, Y. Zheng, J. Appl. Polym. Sci. 125, E334 (2012)CrossRefGoogle Scholar
  26. 26.
    Z. Peng, C. Feng, Y. Luo, Y. Li, L.X. Kong, Carbon 48, 4497 (2010)CrossRefGoogle Scholar
  27. 27.
    J. Xu, J. Li, Y. Wu, S. Bai, J. Mater. Sci. Mater. Electron. 25, 233 (2014)CrossRefGoogle Scholar
  28. 28.
    L. Bokobza, M. Rahmani, C. Belin, J.-L. Bruneel, N.-E. El Bounia, J. Polym. Sci. Part B Polym. Phys. 46, 1939 (2008)CrossRefGoogle Scholar
  29. 29.
    P. Kueseng, P. Sae-oui, N. Rattanasom, Polym. Test. 32, 731 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.College of ScienceCivil Aviation University of ChinaTianjinPeople’s Republic of China

Personalised recommendations