Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 9, pp 9379–9383 | Cite as

Influence of Ni on structural, morphological and optical properties of nanocrystalline CdS thin films prepared by chemical bath deposition method



Nickel–cadmium sulphide thin films were prepared by chemical bath deposition technique with different molar ratios of Ni. The films were annealed at 500 °C. The effects of Ni–CdS thin films the structural, morphological and optical properties of these films were investigated. X-ray diffraction studies revealed that all the deposited films were polycrystalline with hexagonal structure and exhibited (101) preferential orientation. The scanning electron microscopy images showed that the surface grain size became smaller, with less void area and led to the formation of high quality film surfaces. A dense surface structure composed of crystallites whose average size decreases when the Ni concentration ratio increases. The optical study showed that all the films were highly transparent. The band gap energy of the films lies from 2.4 to 3.5 eV. Photoluminescence spectrum shows the blue luminescence peaks which were found to be photosensitive in nature.


Chemical Bath Deposition Void Area Collision Cascade Chemical Bath Deposition Method Chemical Bath Deposition Technique 


  1. 1.
    M.A. Green, K. Emery et al., Solar cell efficiency tables. Prog. Photovolt. Res. Appl. 20(1), 606–614 (2012)CrossRefGoogle Scholar
  2. 2.
    N. Romeo, A. Bosio, V. Canevari et al., Recent progress on CdTe/CdS thin filmsolar cells. Sol. Energy 77(6), 795–801 (2004)CrossRefGoogle Scholar
  3. 3.
    M. Bedair, M.O. Ztas, H. Kara, Effect of the substrate temperature on the structural, optical and electrical properties of spray-deposited CdS: B films. Mater. Electron. 24(2), 499–506 (2012)CrossRefGoogle Scholar
  4. 4.
    D. Acosta, C. Magana, A. Martinez, A. Maldonado, Sol. Energy Mater. Sol. Cells 82, 11 (2004)CrossRefGoogle Scholar
  5. 5.
    B. Patil, D. Naik, V. Shrivastava, Chalcogenide Lett. 8, 117 (2011)Google Scholar
  6. 6.
    H. Khallaf, G. Chai, O. Lupan, L. Chow, S. Park, A. Schulte, Appl. Surf. Sci. 255, 4129 (2009)CrossRefGoogle Scholar
  7. 7.
    J. Lee, J. Yi, K. Yang, J. Park, R. Oh, Thin Solid Films 431, 344 (2003)CrossRefGoogle Scholar
  8. 8.
    E. Bacaksiz, M. Tomakin, M. Altulbas, M. Parlak, T. Colagoklu, Phys. B Condens. Matter. 403, 3740 (2008)CrossRefGoogle Scholar
  9. 9.
    S. Chandramodhan, T. Strache, S. Sarangi, R. Sathyamorthy, T. Som, Mater. Sci. Eng. B 171, 16 (2010)CrossRefGoogle Scholar
  10. 10.
    M.A. Mahdi, J.J. Hassan, S.S. Ng, Z. Hassan, N.N. Ahmad, Phys. E 44, 1716 (2012)CrossRefGoogle Scholar
  11. 11.
    C. Hsu, D. Shen, Nanoscale Res. Lett. 7, 1 (2012)CrossRefGoogle Scholar
  12. 12.
    C. Shen, J. Chu, F. Qian, X. Zou, C. Zhong, K. Li, S. Jin, JMOp 59, 1199 (2012)Google Scholar
  13. 13.
    M. Ren, C. Zhang, P. Li, X. Liu, JMMM 324, 2039 (2012)CrossRefGoogle Scholar
  14. 14.
    W. Lee, S.K. Min, V. Dhas et al., Chemical bath deposition of CdS quantum dots on vertically aligned ZnO nanorods for quantum dots-sensitizedsolar cells. Electrochem. Commun. 11(1), 103–106 (2009)CrossRefGoogle Scholar
  15. 15.
    S. Mahanty, D. Basak, F. Rueda et al., Optical properties of chemical bath deposited CdS thin films. Electron. Mater. 28(5), 559–562 (1999)CrossRefGoogle Scholar
  16. 16.
    T.D. Dzhafarov, M. Altunbas, A.I. Kopya et al., Formation of p-type CdS thin films by laser-stimulated copper diffusion. J. Phys. D Appl. Phys. 32(24), 125–132 (1999)CrossRefGoogle Scholar
  17. 17.
    Standard JCPDS Data Card No. 89-2944, Physica 27, 337 (1961)Google Scholar
  18. 18.
    Ra. Shanmugavadivu, J. Yuvaloshini, G. Ravi, Effect of annealing on the characteristics of nano crystalline CdS thinfilms prepared by chemical bath deposition method. Int. J. Semicond. Sci. Technol. 3(2), 33–42 (2013)Google Scholar
  19. 19.
    A. Dakhel, Sol. Energy 83, 934 (2009)CrossRefGoogle Scholar
  20. 20.
    W. Bolse, Mater. Sci. Eng., R 12, 53 (1994)CrossRefGoogle Scholar
  21. 21.
    K. Senthil, D. Mangalaraj, S.K. Narayandass, B. Hong, Y. Roh, C.S. Park, J. Yi, Semicond. Sci. Technol. 17, 97 (2002)CrossRefGoogle Scholar
  22. 22.
    H. Khallaf, G. Chai, O. Lupan, L. Chow, S. Park, A. Schulte, J. Phys. D Appl. Phys. 41, 85304 (2008)CrossRefGoogle Scholar
  23. 23.
    J.A. Dávila-Pintle, R. Lozada-Morales, M.R. Palomino-Merino, J.A. Rivera-Márquez, O. Portillo-Moreno, O. Zelaya-Angel, J. Appl. Phys. 101, 013712 (2007)CrossRefGoogle Scholar
  24. 24.
    P.J. Sebastian, Appl. Phys. Lett. 62, 2956 (1993)CrossRefGoogle Scholar
  25. 25.
    P. Roy, S.K. Srivastava, J. Phys. D Appl. Phys. 39, 4771 (2006)CrossRefGoogle Scholar
  26. 26.
    I. Ermolovich, G. Matvievskaya, M. Shaikman, Fiz. Tekh. Poluprovodn. 9, 1620 (1985)Google Scholar
  27. 27.
    C.T. Tsai, D.S. Chuu, G.L. Chen, S.L. Yang, J. Appl. Phys. 79, 9105 (1996)CrossRefGoogle Scholar
  28. 28.
    M. Agata, H. Kurase, S. Hayashi, K. Yamamoto, Solid State Commun. 76, 1061 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PhysicsKaraikudi Institute of TechnologyKaraikudiIndia
  2. 2.Department of PhysicsRaja Doraisingam Govt. Arts CollegeSivagangaiIndia

Personalised recommendations