Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 9, pp 9291–9296 | Cite as

Highly transparent conductive Ga doped ZnO films in the near-infrared wavelength range

  • Zhengwei Chen
  • Katsuhiko Saito
  • Tooru Tanaka
  • Mitsuhiro Nishio
  • Qixin Guo


Highly transparent Ga doped ZnO thin films were prepared on (0001) sapphire substrates by pulsed laser deposition. Hall-effect measurement reveals that electron concentration of the ZnO films can be controlled between 1018 and 1021 cm−3 by adjusting Ga contents in the targets. Optical measurements show the transmittance is above 60 % in the near-infrared wavelength region for all Ga doped ZnO films. Meanwhile, these films also have high crystal quality and smooth surface when the electron concentration up to 1021 cm−3, suggesting that the Ga doped ZnO is a promising material for using as transparent electrode for near infrared optoelectronic devices.


Sapphire Substrate Transparent Conductive Oxide Force Constant Change Transparent Conductive Oxide Thin Film Transparent Conductive Oxide Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially supported by the Partnership Project for Fundamental Technology Research of Ministry of Education, Culture, Sports, Science, and Technology, Japan.


  1. 1.
    S.L. Chen, W.M. Chen, I.A. Buganova, Spin dynamics of isoelectronic bound excitons in ZnO. Phys. Rev. B 89, 235202 (2014)CrossRefGoogle Scholar
  2. 2.
    T. Tynell, M. Karppinen, Atomic layer deposition of ZnO: a review. Semicond. Sci. Technol. 29, 043001 (2014)CrossRefGoogle Scholar
  3. 3.
    T. Koida, M. Kondo, Comparative studies of transparent conductive Ti-, Zr-, and Sn-doped In2O3 using a combinatorial approach. J. Appl. Phys. 101, 063713 (2007)CrossRefGoogle Scholar
  4. 4.
    S. Calnan, A.N. Tiwari, High mobility transparent conducting oxides for thin film solar cells. Thin Solid Films 518, 1839–1849 (2010)CrossRefGoogle Scholar
  5. 5.
    L. Cao, L. Zhu, J. Jiang, Z. Ye, B. Zhao, Highly transparent and conducting fluorine-doped ZnO thin films prepared by pulsed laser deposition. Sol. Energy Mater. Sol. Cells 95, 894–898 (2011)CrossRefGoogle Scholar
  6. 6.
    Z.G. Zang, A. Nakamura, J. Temmyo, Single cuprous oxide films synthesized by radical oxidation at low temperature for PV application. Opt. Express 21, 11448–11456 (2013)CrossRefGoogle Scholar
  7. 7.
    S. Bethke, H. Pan, B.W. Wessels, Luminescence of heteroepitaxial zinc oxide. Appl. Phys. Lett. 52, 138–140 (1988)CrossRefGoogle Scholar
  8. 8.
    S. Choopun, R.D. Vispute, W. Noch, A. Balsamo, R.P. Sharma, T. Venkatesan, A. Iliadis, D.C. Look, Oxygen pressure-tuned epitaxy and optoelectronic properties of laser-deposited ZnO films on sapphire. Appl. Phys. Lett. 75, 3947–3949 (1999)CrossRefGoogle Scholar
  9. 9.
    Q. Nian, M.Y. Zhang, B.D. Schwartz, G.J. Cheng, Ultraviolet laser crystallized ZnO: Al films on sapphire with high Hall mobility for simultaneous enhancement of conductivity and transparency. Appl. Phys. Lett. 104, 201907 (2014)CrossRefGoogle Scholar
  10. 10.
    S.D. Shinde, A.V. Deshmukh, S.K. Date, V.G. Sathe, K.P. Adhi, Effect of Ga doping on micro/structural electrical and optical properties of pulsed laser deposited ZnO thin films. Thin Solid Films 520, 1212–1217 (2011)CrossRefGoogle Scholar
  11. 11.
    J.L. Zhao, X.W. Sun, H. Ryu, Y.B. Moon, Thermally stable transparent conducting and highly infrared reflective Ga-doped ZnO thin films by metal organic chemical vapor deposition. Opt. Mater. 33, 768–772 (2011)CrossRefGoogle Scholar
  12. 12.
    L. Ding, S. Nicolay, J. Steinhauser, U. Kroll, C. Ballif, Relaxing the conductivity/transparency trade-off in MOCVD ZnO thin films by hydrogen plasma. Adv. Funct. Mater. 23, 5177–5182 (2013)CrossRefGoogle Scholar
  13. 13.
    Z.W. Chen, X. Wang, S. Noda, K. Saito, T. Tanaka, M. Nishio, M. Arita, Q.X. Guo, Effects of dopant contents on structure, morphological and optical properties of Er doped Ga2O3 films. Superlattices Microstruct. 90, 207–214 (2016)CrossRefGoogle Scholar
  14. 14.
    H. Mahdhi, Z.B. Ayadi, S. Alaya, J.L. Gauffier, K. Djessas, The effects of dopant concentration and deposition temperature on the structural, optical and electrical properties of Ga-doped ZnO thin films. Superlattices Microstruct. 72, 60–71 (2014)CrossRefGoogle Scholar
  15. 15.
    Q.X. Guo, T. Yamamura, A. Yoshida, N. Itoh, Structural properties of InN films grown on sapphire substrates by microwave-excited metalorganic vapor-phase epitaxy. J. Appl. Phys. 75, 4927–4932 (1994)CrossRefGoogle Scholar
  16. 16.
    J.D. Ye, S.L. Gu, S.M. Zhu, S.M. Liu, Y.D. Zheng, R. Zhang, Y. Shi, H.Q. Yu, Y.D. Ye, Gallium doping dependence of single-crystal n-type ZnO grown by metal organic chemical vapor deposition. J. Cryst. Growth 283, 279–285 (2005)CrossRefGoogle Scholar
  17. 17.
    Z.G. Qian, W.Z. Shen, H. Ogawa, Q.X. Guo, Experimental studies of lattice dynamical properties in indium nitride. J. Phys. Condens. Matter 16, R381–R414 (2004)CrossRefGoogle Scholar
  18. 18.
    J. Ding, D. Zhang, T. Konomi, K. Saito, Q.X. Guo, Epitaxial growth of ZnO layers on (111) GaAs substrates by laser molecular beam epitaxy. Thin Solid Films 520, 2663–2666 (2012)CrossRefGoogle Scholar
  19. 19.
    Y. Yang, J.J. Qi, Q.L. Liao, Y. Zhang, X.Q. Yan, Y.H. Huang, L.D. Tang, Fabrication, structural characterization, and photoluminescence of Ga-doped ZnO nanobelts. Appl. Phys. A 94, 799–803 (2009)CrossRefGoogle Scholar
  20. 20.
    J. Nomoto, M. Konagai, K. Okada, T. Ito, T. Miyata, T. Minami, Comparative study of resistivity characteristics between transparent conducting AZO and GZO thin films for use at high temperatures. Thin Solid Films 518, 2937–2940 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Zhengwei Chen
    • 1
  • Katsuhiko Saito
    • 1
  • Tooru Tanaka
    • 1
  • Mitsuhiro Nishio
    • 1
  • Qixin Guo
    • 1
  1. 1.Department of Electrical and Electronic Engineering, Synchrotron Light Application CenterSaga UniversitySagaJapan

Personalised recommendations