Advertisement

Effect of Ar/O2 gas ratios on the structure, electrical and optical properties of Na-doped ZnCdO film synthesized by magnetron sputtering

  • Zhong Hua
  • Yanping Song
  • Yingrui Sui
  • Yanjie Wu
  • Shiquan Lv
  • Bin Yao
  • Li Xiao
  • Zhanwu Wang
  • Xiaoyan Liu
Article

Abstract

Na-doped ZnCdO films [ZCO:Na] were grown on quartz substrates at different ratios of argon to oxygen gas flow (Ar:O2) by the radio frequency magnetron sputtering method. The influence of Ar:O2 ratio on structure, electrical and optical properties was investigated by using X-ray diffraction, X-ray photoelectron spectroscopy, Transmission electron microscopy, Hall measurements (Hall), optical absorption spectra and Photoluminescence. Results indicated that all obtained ZCO:Na thin films possess the hexagonal wurtzite structure and free from the formation of secondary phases. As the Ar:O2 ratios change from 1:5 to 5:1, at first the Eg increases with the Ar:O2 ratios increasing and reaches a maximum value at the Ar:O2 ratio of 1:1, then decreases evidently with the Ar:O2 ratios increasing continually. It is found that the lower Ar:O2 ratio is propitious to obtain n-type ZCO:Na film, while the relative higher Ar:O2 ratio is required to obtain p-type ZCO:Na thin films. When the Ar:O2 ratio is 1:1, the ZCO:Na film shows the best p-type conduction characteristics, which has a hole concentration of 1.13 × 1016 cm−3, Hall mobility of 2.54 cm2 V−1 s−1 and resistivity of 2.53 × 102 Ω cm. In addition, the mechanism of the influence of Ar:O2 ratio on the electrical and optical properties of the film as well as the mechanism of p-type conductivity was discussed in this work.

Keywords

Magnetron Sputtering Radio Frequency Magnetron Sputtering NaZn ICDD Card Radio Frequency Reactive Magnetron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank financial support of the National Natural Science Foundation of China under Grant Nos. 11254001, 61505067, 61475063, 11204104, the Program for the Development of Science and Technology of Jilin Province Grant No. 20150520086JH, the Program for New Century Excellent Talents in University Grant No. NCET-13-0824.

References

  1. 1.
    Y.S. Lee, S.N. Lee, I.K. Park, Ceram. Int. 39, 3043 (2013)CrossRefGoogle Scholar
  2. 2.
    O. Lupan, T. Pauporté, I.M. Tiginyanu, V.V. Ursaki, H. Heinrich, L. Chow, Mater. Sci. Eng. B 176, 1277 (2011)CrossRefGoogle Scholar
  3. 3.
    A. Aravinda, M.K. Jayaraj, M. Kumar, R. Chandra, Mater. Sci. Eng. B 177, 1017 (2012)CrossRefGoogle Scholar
  4. 4.
    Y.F. Yan, J.B. Li, S.H. Wei, M.M. Al-Jassim, Phys. Rev. Lett. 98, 135506 (2007)CrossRefGoogle Scholar
  5. 5.
    A. Janotti, C.G.V.D. Walle, Rep. Prog. Phys. 72, 126501 (2009)CrossRefGoogle Scholar
  6. 6.
    J.W. Mares, F.R. Ruhge, A.V. Thompson, P.G. Kik, A. Osinsky, B. Hertog, A.M. Dabiran, P.P. Chow, W.V. Schoenfeld, Opt. Mater. 30, 346 (2007)CrossRefGoogle Scholar
  7. 7.
    K. Yamamoto, T. Ohashi, T. Tawara, H. Gotoh, A. Nakamura, J. Temmyo, Appl. Phys. Lett. 93, 171913 (2008)CrossRefGoogle Scholar
  8. 8.
    K. Yamamoto, T. Tsuboi, T. Ohashi, T. Tawara, H. Gotoh, A. Nakamura, J. Temmyo, J. Cryst. Growth 312, 1703 (2010)CrossRefGoogle Scholar
  9. 9.
    Y.Z. Zhu, G.D. Chen, H.G. Ye, A. Walsh, C.Y. Moon, S.H. Wei, Phys. Rev. B. 77, 5209 (2008)Google Scholar
  10. 10.
    J.J. Chen, F. Ren, Y.J. Li, D.P. Norton, S.J. Peartona, A. Osinsky, J.W. Dong, P.P. Chow, J.F. Weaver, Appl. Phys. Lett. 87, 2106 (2005)Google Scholar
  11. 11.
    D.W. Ma, Z.Z. Ye, H.M. Lu, J.Y. Huang, B.H. Zhao, L.P. Zhu, H.J. Zhang, P.M. He, Thin Solid Films 461, 250 (2004)CrossRefGoogle Scholar
  12. 12.
    W. Liu, F.X. Xiu, K. Sun, Y.H. Xie, K.L. Wang, Y. Wang, J. Zou, Z. Yang, J.L. Liu, J. Am. Chem. Soc. 132, 2498 (2010)CrossRefGoogle Scholar
  13. 13.
    L.D. Tang, B. Wang, Y. Zhang, Y.S. Gu, Mater. Sci. Eng. B 176, 548 (2011)CrossRefGoogle Scholar
  14. 14.
    M.K. Gupta, N. Sinha, B.K. Singh, B. Kumar, Mater. Lett. 64, 1825 (2010)CrossRefGoogle Scholar
  15. 15.
    S.S. Lin, J.G. Lu, Z.Z. Ye, H.P. He, X.Q. Gu, L.X. Chen, J.Y. Huang, B.H. Zhao, Solid State Commun. 148, 25 (2008)CrossRefGoogle Scholar
  16. 16.
    S.S. Lin, Z.Z. Ye, J.G. Lu, H.P. He, L.X. Chen, X.Q. Gu, J.Y. Huang, L.P. Zhu, B.H. Zhao, J. Phys. D Appl. Phys. 41, 155114 (2008)CrossRefGoogle Scholar
  17. 17.
    Z.Z. Ye, S.S. Lin, H.P. He, X.Q. Gu, L.X. Chen, J.G. Lu, J.Y. Huang, L.P. Zhu, L. Wang, Y.Z. Zhang, X.H. Li, Chin. J. Semicond. 29, 1433 (2008)Google Scholar
  18. 18.
    S.S. Kim, B.T. Lee, Thin Solid Films 446, 307 (2004)CrossRefGoogle Scholar
  19. 19.
    S.N. Das, J.H. Choi, J.P. Kar, T.I. Lee, J.M. Myoung, Mater. Chem. Phys. 121, 472 (2010)CrossRefGoogle Scholar
  20. 20.
    A. Sáaedi, R. Yousefi, F. Jamali-Sheini, M. Cheraghizade, A.K. Zak, N.M. Huang, Ceram. Int. 40, 4327 (2014)Google Scholar
  21. 21.
    M.N. Islam, T.B. Ghosh, K.L. Chopra, H.N. Acharya, Thin Solid Films 280, 20 (1996)CrossRefGoogle Scholar
  22. 22.
    M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, Appl. Surf. Sci. 158, 134 (2000)CrossRefGoogle Scholar
  23. 23.
    B.Q. Yang, A. Kumar, H.X. Zhang, P. Feng, R.S. Katiyar, Z.B. Wang, J. Phys. D Appl. Phys. 42, 045415 (2009)CrossRefGoogle Scholar
  24. 24.
    J. Jiang, L.P. Zhu, Y. Li, Y.M. Guo, W.S. Zhou, L. Cao, H.P. He, Z.Z. Ye, J. Alloys Compd. 547, 59 (2013)CrossRefGoogle Scholar
  25. 25.
    A. Mekki, D. Holland, C.F. McConville, M. Salim, J. Non-Cryst. Solids 208, 267 (1996)CrossRefGoogle Scholar
  26. 26.
    C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg, Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie, 1979), p. 55344Google Scholar
  27. 27.
    B.D. Ahn, H.S. Kang, J.H. Kim, G.H. Kim, H.W. Chang, S.Y. Lee, J. Appl. Phys. 100, 093701 (2006)CrossRefGoogle Scholar
  28. 28.
    A. Dadgar, A. Krtschil, F. Bertram, S. Giemsch, T. Hempel, P. Veit, A. Diez, N. Oleynik, R. Clos, J. Christen, A. Krost, Superlattices Microstruct. 38, 245 (2005)CrossRefGoogle Scholar
  29. 29.
    A. Krtschil, A. Dadgar, N. Oleynik, J. Blasing, A. Diez, A. Krost, Appl. Phys. Lett. 87, 262105 (2005)CrossRefGoogle Scholar
  30. 30.
    A. Krtschil, A. Dadgar, A. Diez, A. Krost, J. Mater. Res. 22, 1775 (2007)CrossRefGoogle Scholar
  31. 31.
    J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627 (1966)CrossRefGoogle Scholar
  32. 32.
    J.H. Hong, Y.F. Wang, G. He, J.X. Wang, J. Alloys Compd. 506, 1 (2010)CrossRefGoogle Scholar
  33. 33.
    A.D. Acharya, S. Moghe, R. Panda, S.B. Shrivastava, M. Gangrade, T. Shripathi, D.M. Phase, V. Ganesan, Thin Solid Films 525, 49 (2012)CrossRefGoogle Scholar
  34. 34.
    J.J. Hopfield, D.G. Thomas, Phys. Rev. 122, 35 (1961)CrossRefGoogle Scholar
  35. 35.
    K. Huang, Z. Tang, L. Zhang, J. Yu, J. Lv, X. Liu, F. Liu, Appl. Surf. Sci. 258, 3710 (2012)CrossRefGoogle Scholar
  36. 36.
    A.F. Kohan, G. Ceder, D. Morgan, C.G.V.D. Walle, Phys. Rev. B 61, 15019 (2000)CrossRefGoogle Scholar
  37. 37.
    S.H. Jeong, B.S. Kim, B.T. Lee, Appl. Phys. Lett. 82, 2625 (2003)CrossRefGoogle Scholar
  38. 38.
    Y.J. Zeng, Z.Z. Ye, W.Z. Xu, J.G. Lu, H.P. He, L.P. Zhu, B.H. Zhao, Y. Che, S.B. Zhang, Appl. Phys. Lett. 88, 262103 (2006)CrossRefGoogle Scholar
  39. 39.
    W.J. Lee, J. Kang, K.J. Chang, Phys. Rev. B 73, 024117 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Zhong Hua
    • 1
  • Yanping Song
    • 1
  • Yingrui Sui
    • 1
  • Yanjie Wu
    • 1
  • Shiquan Lv
    • 1
  • Bin Yao
    • 2
  • Li Xiao
    • 1
  • Zhanwu Wang
    • 1
  • Xiaoyan Liu
    • 1
  1. 1.Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of EducationJilin Normal UniversitySipingChina
  2. 2.State Key Laboratory of Superhard Materials and College of PhysicsJilin UniversityChangchunChina

Personalised recommendations